Matches in SemOpenAlex for { <https://semopenalex.org/work/W3005198074> ?p ?o ?g. }
- W3005198074 endingPage "29039" @default.
- W3005198074 startingPage "29027" @default.
- W3005198074 abstract "Image super-resolution (SR) technique can improve the spatial resolution of images without upgrading the imaging system. As a result, SR promotes the development of high resolution (HR) remote sensing image applications. Many remote sensing image SR algorithms based on deep learning have been proposed recently, which can effectively improve the spatial resolution under the constraints of HR images. However, images acquired by remote sensing imaging devices typically have lower resolution. Hence, an insufficient number of HR remote sensing images are available for training deep neural networks. In view of this problem, we propose an unsupervised SR method that does not require HR remote sensing images. The proposed method introduces a generative adversarial network (GAN) that obtains SR images through the generator; then, the SR images are downsampled to train the discriminator with low resolution (LR) images. Our method outperformed several methods in terms of the quality of the obtained SR images as measured by 6 evaluation metrics, which proves the satisfactory performance of the proposed unsupervised method for improving the spatial resolution of remote sensing images." @default.
- W3005198074 created "2020-02-14" @default.
- W3005198074 creator A5000320630 @default.
- W3005198074 creator A5006651636 @default.
- W3005198074 creator A5037082491 @default.
- W3005198074 creator A5040205022 @default.
- W3005198074 creator A5054418515 @default.
- W3005198074 date "2020-01-01" @default.
- W3005198074 modified "2023-09-26" @default.
- W3005198074 title "An Unsupervised Remote Sensing Single-Image Super-Resolution Method Based on Generative Adversarial Network" @default.
- W3005198074 cites W134193804 @default.
- W3005198074 cites W1513879401 @default.
- W3005198074 cites W1885185971 @default.
- W3005198074 cites W1930824406 @default.
- W3005198074 cites W1949096787 @default.
- W3005198074 cites W1976416062 @default.
- W3005198074 cites W1977581467 @default.
- W3005198074 cites W1979606177 @default.
- W3005198074 cites W1980038761 @default.
- W3005198074 cites W1983364832 @default.
- W3005198074 cites W1989704934 @default.
- W3005198074 cites W2015718162 @default.
- W3005198074 cites W2020912318 @default.
- W3005198074 cites W2028790650 @default.
- W3005198074 cites W2034128706 @default.
- W3005198074 cites W2046828849 @default.
- W3005198074 cites W2049352069 @default.
- W3005198074 cites W2087380704 @default.
- W3005198074 cites W2088909704 @default.
- W3005198074 cites W2093806958 @default.
- W3005198074 cites W2097117768 @default.
- W3005198074 cites W2103559027 @default.
- W3005198074 cites W2121058967 @default.
- W3005198074 cites W2142843085 @default.
- W3005198074 cites W2150081556 @default.
- W3005198074 cites W2165939075 @default.
- W3005198074 cites W2170965888 @default.
- W3005198074 cites W2171211028 @default.
- W3005198074 cites W2194775991 @default.
- W3005198074 cites W2214802144 @default.
- W3005198074 cites W2242218935 @default.
- W3005198074 cites W233979554 @default.
- W3005198074 cites W2359099468 @default.
- W3005198074 cites W2379948024 @default.
- W3005198074 cites W2432643382 @default.
- W3005198074 cites W2476548250 @default.
- W3005198074 cites W2534320940 @default.
- W3005198074 cites W2546483212 @default.
- W3005198074 cites W2560755969 @default.
- W3005198074 cites W2562637781 @default.
- W3005198074 cites W2593697158 @default.
- W3005198074 cites W2604737827 @default.
- W3005198074 cites W2607041014 @default.
- W3005198074 cites W2615706402 @default.
- W3005198074 cites W2621121458 @default.
- W3005198074 cites W2747898905 @default.
- W3005198074 cites W2767850900 @default.
- W3005198074 cites W2774112877 @default.
- W3005198074 cites W2775132396 @default.
- W3005198074 cites W2780544323 @default.
- W3005198074 cites W2788418738 @default.
- W3005198074 cites W2789642882 @default.
- W3005198074 cites W2791700545 @default.
- W3005198074 cites W2795024892 @default.
- W3005198074 cites W2809482722 @default.
- W3005198074 cites W2810792944 @default.
- W3005198074 cites W2810821452 @default.
- W3005198074 cites W2883102461 @default.
- W3005198074 cites W2895240252 @default.
- W3005198074 cites W2895598217 @default.
- W3005198074 cites W2900595774 @default.
- W3005198074 cites W2907551576 @default.
- W3005198074 cites W2962793481 @default.
- W3005198074 cites W2962903125 @default.
- W3005198074 cites W2963372104 @default.
- W3005198074 cites W2963470893 @default.
- W3005198074 cites W2963645458 @default.
- W3005198074 cites W2963704386 @default.
- W3005198074 cites W2964013315 @default.
- W3005198074 cites W2964101377 @default.
- W3005198074 cites W2964125708 @default.
- W3005198074 cites W2976372274 @default.
- W3005198074 cites W3103856189 @default.
- W3005198074 cites W3104720471 @default.
- W3005198074 cites W4250780936 @default.
- W3005198074 doi "https://doi.org/10.1109/access.2020.2972300" @default.
- W3005198074 hasPublicationYear "2020" @default.
- W3005198074 type Work @default.
- W3005198074 sameAs 3005198074 @default.
- W3005198074 citedByCount "14" @default.
- W3005198074 countsByYear W30051980742020 @default.
- W3005198074 countsByYear W30051980742021 @default.
- W3005198074 countsByYear W30051980742022 @default.
- W3005198074 countsByYear W30051980742023 @default.
- W3005198074 crossrefType "journal-article" @default.
- W3005198074 hasAuthorship W3005198074A5000320630 @default.
- W3005198074 hasAuthorship W3005198074A5006651636 @default.
- W3005198074 hasAuthorship W3005198074A5037082491 @default.