Matches in SemOpenAlex for { <https://semopenalex.org/work/W3005210932> ?p ?o ?g. }
- W3005210932 endingPage "1646" @default.
- W3005210932 startingPage "1639" @default.
- W3005210932 abstract "Aims Familial hypercholesterolemia (FH) is the most common genetic disorder of lipid metabolism. The gold standard for FH diagnosis is genetic testing, available, however, only in selected university hospitals. Clinical scores – for example, the Dutch Lipid Score – are often employed as alternative, more accessible, albeit less accurate FH diagnostic tools. The aim of this study is to obtain a more reliable approach to FH diagnosis by a “virtual” genetic test using machine-learning approaches. Methods and results We used three machine-learning algorithms (a classification tree (CT), a gradient boosting machine (GBM), a neural network (NN)) to predict the presence of FH-causative genetic mutations in two independent FH cohorts: the FH Gothenburg cohort (split into training data ( N = 174) and internal test ( N = 74)) and the FH-CEGP Milan cohort (external test, N = 364). By evaluating their area under the receiver operating characteristic (AUROC) curves, we found that the three machine-learning algorithms performed better (AUROC 0.79 (CT), 0.83 (GBM), and 0.83 (NN) on the Gothenburg cohort, and 0.70 (CT), 0.78 (GBM), and 0.76 (NN) on the Milan cohort) than the clinical Dutch Lipid Score (AUROC 0.68 and 0.64 on the Gothenburg and Milan cohorts, respectively) in predicting carriers of FH-causative mutations. Conclusion In the diagnosis of FH-causative genetic mutations, all three machine-learning approaches we have tested outperform the Dutch Lipid Score, which is the clinical standard. We expect these machine-learning algorithms to provide the tools to implement a virtual genetic test of FH. These tools might prove particularly important for lipid clinics without access to genetic testing." @default.
- W3005210932 created "2020-02-14" @default.
- W3005210932 creator A5005167009 @default.
- W3005210932 creator A5007456183 @default.
- W3005210932 creator A5020610956 @default.
- W3005210932 creator A5021240310 @default.
- W3005210932 creator A5033496320 @default.
- W3005210932 creator A5037216844 @default.
- W3005210932 creator A5050497878 @default.
- W3005210932 creator A5055965712 @default.
- W3005210932 creator A5056606171 @default.
- W3005210932 creator A5058166957 @default.
- W3005210932 creator A5085631682 @default.
- W3005210932 creator A5089823520 @default.
- W3005210932 creator A5090687409 @default.
- W3005210932 date "2020-02-04" @default.
- W3005210932 modified "2023-10-16" @default.
- W3005210932 title "Virtual genetic diagnosis for familial hypercholesterolemia powered by machine learning" @default.
- W3005210932 cites W1526112303 @default.
- W3005210932 cites W1964240866 @default.
- W3005210932 cites W1993634977 @default.
- W3005210932 cites W2003487440 @default.
- W3005210932 cites W2031687681 @default.
- W3005210932 cites W2066600483 @default.
- W3005210932 cites W2077268977 @default.
- W3005210932 cites W2091892849 @default.
- W3005210932 cites W2165624352 @default.
- W3005210932 cites W2317043038 @default.
- W3005210932 cites W2610332124 @default.
- W3005210932 cites W2759090324 @default.
- W3005210932 cites W2770877241 @default.
- W3005210932 cites W2794538245 @default.
- W3005210932 cites W2892662764 @default.
- W3005210932 cites W2935996710 @default.
- W3005210932 cites W2945976633 @default.
- W3005210932 cites W2951934944 @default.
- W3005210932 cites W2955044136 @default.
- W3005210932 doi "https://doi.org/10.1177/2047487319898951" @default.
- W3005210932 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32019371" @default.
- W3005210932 hasPublicationYear "2020" @default.
- W3005210932 type Work @default.
- W3005210932 sameAs 3005210932 @default.
- W3005210932 citedByCount "32" @default.
- W3005210932 countsByYear W30052109322020 @default.
- W3005210932 countsByYear W30052109322021 @default.
- W3005210932 countsByYear W30052109322022 @default.
- W3005210932 countsByYear W30052109322023 @default.
- W3005210932 crossrefType "journal-article" @default.
- W3005210932 hasAuthorship W3005210932A5005167009 @default.
- W3005210932 hasAuthorship W3005210932A5007456183 @default.
- W3005210932 hasAuthorship W3005210932A5020610956 @default.
- W3005210932 hasAuthorship W3005210932A5021240310 @default.
- W3005210932 hasAuthorship W3005210932A5033496320 @default.
- W3005210932 hasAuthorship W3005210932A5037216844 @default.
- W3005210932 hasAuthorship W3005210932A5050497878 @default.
- W3005210932 hasAuthorship W3005210932A5055965712 @default.
- W3005210932 hasAuthorship W3005210932A5056606171 @default.
- W3005210932 hasAuthorship W3005210932A5058166957 @default.
- W3005210932 hasAuthorship W3005210932A5085631682 @default.
- W3005210932 hasAuthorship W3005210932A5089823520 @default.
- W3005210932 hasAuthorship W3005210932A5090687409 @default.
- W3005210932 hasBestOaLocation W30052109321 @default.
- W3005210932 hasConcept C119857082 @default.
- W3005210932 hasConcept C126322002 @default.
- W3005210932 hasConcept C154945302 @default.
- W3005210932 hasConcept C2778163477 @default.
- W3005210932 hasConcept C2779120738 @default.
- W3005210932 hasConcept C2780673598 @default.
- W3005210932 hasConcept C41008148 @default.
- W3005210932 hasConcept C58471807 @default.
- W3005210932 hasConcept C71924100 @default.
- W3005210932 hasConcept C72563966 @default.
- W3005210932 hasConcept C84525736 @default.
- W3005210932 hasConceptScore W3005210932C119857082 @default.
- W3005210932 hasConceptScore W3005210932C126322002 @default.
- W3005210932 hasConceptScore W3005210932C154945302 @default.
- W3005210932 hasConceptScore W3005210932C2778163477 @default.
- W3005210932 hasConceptScore W3005210932C2779120738 @default.
- W3005210932 hasConceptScore W3005210932C2780673598 @default.
- W3005210932 hasConceptScore W3005210932C41008148 @default.
- W3005210932 hasConceptScore W3005210932C58471807 @default.
- W3005210932 hasConceptScore W3005210932C71924100 @default.
- W3005210932 hasConceptScore W3005210932C72563966 @default.
- W3005210932 hasConceptScore W3005210932C84525736 @default.
- W3005210932 hasIssue "15" @default.
- W3005210932 hasLocation W30052109321 @default.
- W3005210932 hasOpenAccess W3005210932 @default.
- W3005210932 hasPrimaryLocation W30052109321 @default.
- W3005210932 hasRelatedWork W1470425429 @default.
- W3005210932 hasRelatedWork W3005210932 @default.
- W3005210932 hasRelatedWork W3200719183 @default.
- W3005210932 hasRelatedWork W3204641204 @default.
- W3005210932 hasRelatedWork W3210877509 @default.
- W3005210932 hasRelatedWork W4205958290 @default.
- W3005210932 hasRelatedWork W4249746146 @default.
- W3005210932 hasRelatedWork W4283016678 @default.
- W3005210932 hasRelatedWork W4318350883 @default.
- W3005210932 hasRelatedWork W4328134586 @default.