Matches in SemOpenAlex for { <https://semopenalex.org/work/W3005276469> ?p ?o ?g. }
- W3005276469 endingPage "34" @default.
- W3005276469 startingPage "1" @default.
- W3005276469 abstract "Recent successes in training word embeddings for Natural Language Processing ( NLP ) tasks have encouraged a wave of research on representation learning for source code, which builds on similar NLP methods. The overall objective is then to produce code embeddings that capture the maximum of program semantics. State-of-the-art approaches invariably rely on a syntactic representation (i.e., raw lexical tokens, abstract syntax trees, or intermediate representation tokens) to generate embeddings, which are criticized in the literature as non-robust or non-generalizable. In this work, we investigate a novel embedding approach based on the intuition that source code has visual patterns of semantics. We further use these patterns to address the outstanding challenge of identifying semantic code clones. We propose the WySiWiM ( ‘ ‘What You See Is What It Means ” ) approach where visual representations of source code are fed into powerful pre-trained image classification neural networks from the field of computer vision to benefit from the practical advantages of transfer learning. We evaluate the proposed embedding approach on the task of vulnerable code prediction in source code and on two variations of the task of semantic code clone identification: code clone detection (a binary classification problem), and code classification (a multi-classification problem). We show with experiments on the BigCloneBench (Java), Open Judge (C) that although simple, our WySiWiM approach performs as effectively as state-of-the-art approaches such as ASTNN or TBCNN. We also showed with data from NVD and SARD that WySiWiM representation can be used to learn a vulnerable code detector with reasonable performance (accuracy ∼90%). We further explore the influence of different steps in our approach, such as the choice of visual representations or the classification algorithm, to eventually discuss the promises and limitations of this research direction." @default.
- W3005276469 created "2020-02-14" @default.
- W3005276469 creator A5031345288 @default.
- W3005276469 creator A5040326968 @default.
- W3005276469 creator A5040574362 @default.
- W3005276469 creator A5053301563 @default.
- W3005276469 creator A5082835974 @default.
- W3005276469 date "2021-12-24" @default.
- W3005276469 modified "2023-10-16" @default.
- W3005276469 title "What You See is What it Means! Semantic Representation Learning of Code based on Visualization and Transfer Learning" @default.
- W3005276469 cites W2003285370 @default.
- W3005276469 cites W2065053490 @default.
- W3005276469 cites W2101832700 @default.
- W3005276469 cites W2104094955 @default.
- W3005276469 cites W2107697055 @default.
- W3005276469 cites W2108598243 @default.
- W3005276469 cites W2119821739 @default.
- W3005276469 cites W2120322286 @default.
- W3005276469 cites W2122111042 @default.
- W3005276469 cites W2128782367 @default.
- W3005276469 cites W2128888088 @default.
- W3005276469 cites W2136099030 @default.
- W3005276469 cites W2138756793 @default.
- W3005276469 cites W2165698076 @default.
- W3005276469 cites W2168809519 @default.
- W3005276469 cites W2168891858 @default.
- W3005276469 cites W2194775991 @default.
- W3005276469 cites W2400080339 @default.
- W3005276469 cites W2548028511 @default.
- W3005276469 cites W2559597482 @default.
- W3005276469 cites W2618530766 @default.
- W3005276469 cites W2619697695 @default.
- W3005276469 cites W2767717989 @default.
- W3005276469 cites W2795237776 @default.
- W3005276469 cites W2883359218 @default.
- W3005276469 cites W2955426500 @default.
- W3005276469 cites W2963926786 @default.
- W3005276469 cites W2964150020 @default.
- W3005276469 cites W2993743533 @default.
- W3005276469 cites W2997591727 @default.
- W3005276469 cites W3009129408 @default.
- W3005276469 cites W3041133507 @default.
- W3005276469 cites W3089357829 @default.
- W3005276469 cites W3105535951 @default.
- W3005276469 doi "https://doi.org/10.1145/3485135" @default.
- W3005276469 hasPublicationYear "2021" @default.
- W3005276469 type Work @default.
- W3005276469 sameAs 3005276469 @default.
- W3005276469 citedByCount "5" @default.
- W3005276469 countsByYear W30052764692022 @default.
- W3005276469 countsByYear W30052764692023 @default.
- W3005276469 crossrefType "journal-article" @default.
- W3005276469 hasAuthorship W3005276469A5031345288 @default.
- W3005276469 hasAuthorship W3005276469A5040326968 @default.
- W3005276469 hasAuthorship W3005276469A5040574362 @default.
- W3005276469 hasAuthorship W3005276469A5053301563 @default.
- W3005276469 hasAuthorship W3005276469A5082835974 @default.
- W3005276469 hasBestOaLocation W30052764691 @default.
- W3005276469 hasConcept C119857082 @default.
- W3005276469 hasConcept C150899416 @default.
- W3005276469 hasConcept C154945302 @default.
- W3005276469 hasConcept C177264268 @default.
- W3005276469 hasConcept C184337299 @default.
- W3005276469 hasConcept C186644900 @default.
- W3005276469 hasConcept C199360897 @default.
- W3005276469 hasConcept C204321447 @default.
- W3005276469 hasConcept C23123220 @default.
- W3005276469 hasConcept C2776760102 @default.
- W3005276469 hasConcept C2777462759 @default.
- W3005276469 hasConcept C41008148 @default.
- W3005276469 hasConcept C41608201 @default.
- W3005276469 hasConcept C43126263 @default.
- W3005276469 hasConcept C58646249 @default.
- W3005276469 hasConceptScore W3005276469C119857082 @default.
- W3005276469 hasConceptScore W3005276469C150899416 @default.
- W3005276469 hasConceptScore W3005276469C154945302 @default.
- W3005276469 hasConceptScore W3005276469C177264268 @default.
- W3005276469 hasConceptScore W3005276469C184337299 @default.
- W3005276469 hasConceptScore W3005276469C186644900 @default.
- W3005276469 hasConceptScore W3005276469C199360897 @default.
- W3005276469 hasConceptScore W3005276469C204321447 @default.
- W3005276469 hasConceptScore W3005276469C23123220 @default.
- W3005276469 hasConceptScore W3005276469C2776760102 @default.
- W3005276469 hasConceptScore W3005276469C2777462759 @default.
- W3005276469 hasConceptScore W3005276469C41008148 @default.
- W3005276469 hasConceptScore W3005276469C41608201 @default.
- W3005276469 hasConceptScore W3005276469C43126263 @default.
- W3005276469 hasConceptScore W3005276469C58646249 @default.
- W3005276469 hasIssue "2" @default.
- W3005276469 hasLocation W30052764691 @default.
- W3005276469 hasLocation W30052764692 @default.
- W3005276469 hasOpenAccess W3005276469 @default.
- W3005276469 hasPrimaryLocation W30052764691 @default.
- W3005276469 hasRelatedWork W1972256049 @default.
- W3005276469 hasRelatedWork W2019401739 @default.
- W3005276469 hasRelatedWork W2077104824 @default.
- W3005276469 hasRelatedWork W2145930257 @default.
- W3005276469 hasRelatedWork W2165004968 @default.