Matches in SemOpenAlex for { <https://semopenalex.org/work/W3005350407> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W3005350407 endingPage "28946" @default.
- W3005350407 startingPage "28934" @default.
- W3005350407 abstract "In near decades machine learning approaches have received overwhelming attention from many researchers for solving problems that cannot be ironed out by traditional approaches. However, most of these approaches produces output that is not equivalent to the probability estimates of how credible and reliable the output can be for each prediction. One widely utilized, highly accorded for generalized performance but non-probabilistic machine learning algorithm is the Extreme Learning Machine (ELM). As with other classification systems, ELM generates outputs that cannot be treated as probabilities. Current literature shows approaches attempt to assimilate probabilistic concept in ELM however their outputs are not equivalent to probabilities. Furthermore, these methods invoke two-stage post processing procedures with iterative learning procedures which are against the salient features of ELM that highlight no iterative operations involved in learning. Hence, we want to probe in this paper the ability of ELM to produce probabilistic output from the original architecture of ELM itself while preserving the merits of ELM without the need for a post processing two-stage procedures to convert the output to probability and eliminates iterative learning to compute output weights. Two methodologies of unified probabilistic ELM framework are presented, i.e., Probabilistic Output Extreme Learning Machine (PO-ELM) and Constrained Optimization Posterior Probabilistic Outputs based Extreme Learning Machine (CPP-POELM). The proposed models are evaluated empirically on several benchmark datasets as well as real world power system applications to demonstrate its validity and efficacy in handling pattern classification problems as well as decision making process." @default.
- W3005350407 created "2020-02-14" @default.
- W3005350407 creator A5003577996 @default.
- W3005350407 creator A5062531171 @default.
- W3005350407 creator A5091148707 @default.
- W3005350407 date "2020-01-01" @default.
- W3005350407 modified "2023-10-16" @default.
- W3005350407 title "A New Probabilistic Output Constrained Optimization Extreme Learning Machine" @default.
- W3005350407 cites W1498436455 @default.
- W3005350407 cites W1653626617 @default.
- W3005350407 cites W1968886642 @default.
- W3005350407 cites W2007603454 @default.
- W3005350407 cites W2026131661 @default.
- W3005350407 cites W2042758116 @default.
- W3005350407 cites W2056983531 @default.
- W3005350407 cites W2068768759 @default.
- W3005350407 cites W2092108829 @default.
- W3005350407 cites W2093178608 @default.
- W3005350407 cites W2102353333 @default.
- W3005350407 cites W2111072639 @default.
- W3005350407 cites W2136602355 @default.
- W3005350407 cites W2155482699 @default.
- W3005350407 cites W2157595416 @default.
- W3005350407 cites W2181907871 @default.
- W3005350407 cites W242888642 @default.
- W3005350407 cites W2746811537 @default.
- W3005350407 cites W2800028938 @default.
- W3005350407 cites W2914522305 @default.
- W3005350407 cites W2946983027 @default.
- W3005350407 cites W4238537440 @default.
- W3005350407 cites W4240017161 @default.
- W3005350407 doi "https://doi.org/10.1109/access.2020.2971012" @default.
- W3005350407 hasPublicationYear "2020" @default.
- W3005350407 type Work @default.
- W3005350407 sameAs 3005350407 @default.
- W3005350407 citedByCount "3" @default.
- W3005350407 countsByYear W30053504072022 @default.
- W3005350407 crossrefType "journal-article" @default.
- W3005350407 hasAuthorship W3005350407A5003577996 @default.
- W3005350407 hasAuthorship W3005350407A5062531171 @default.
- W3005350407 hasAuthorship W3005350407A5091148707 @default.
- W3005350407 hasBestOaLocation W30053504071 @default.
- W3005350407 hasConcept C119857082 @default.
- W3005350407 hasConcept C13280743 @default.
- W3005350407 hasConcept C154945302 @default.
- W3005350407 hasConcept C185798385 @default.
- W3005350407 hasConcept C205649164 @default.
- W3005350407 hasConcept C2780150128 @default.
- W3005350407 hasConcept C41008148 @default.
- W3005350407 hasConcept C49937458 @default.
- W3005350407 hasConcept C50644808 @default.
- W3005350407 hasConceptScore W3005350407C119857082 @default.
- W3005350407 hasConceptScore W3005350407C13280743 @default.
- W3005350407 hasConceptScore W3005350407C154945302 @default.
- W3005350407 hasConceptScore W3005350407C185798385 @default.
- W3005350407 hasConceptScore W3005350407C205649164 @default.
- W3005350407 hasConceptScore W3005350407C2780150128 @default.
- W3005350407 hasConceptScore W3005350407C41008148 @default.
- W3005350407 hasConceptScore W3005350407C49937458 @default.
- W3005350407 hasConceptScore W3005350407C50644808 @default.
- W3005350407 hasFunder F4320325434 @default.
- W3005350407 hasLocation W30053504071 @default.
- W3005350407 hasOpenAccess W3005350407 @default.
- W3005350407 hasPrimaryLocation W30053504071 @default.
- W3005350407 hasRelatedWork W2905251838 @default.
- W3005350407 hasRelatedWork W2961085424 @default.
- W3005350407 hasRelatedWork W2969890106 @default.
- W3005350407 hasRelatedWork W3046775127 @default.
- W3005350407 hasRelatedWork W3107602296 @default.
- W3005350407 hasRelatedWork W3170094116 @default.
- W3005350407 hasRelatedWork W3209574120 @default.
- W3005350407 hasRelatedWork W4306674287 @default.
- W3005350407 hasRelatedWork W4312192474 @default.
- W3005350407 hasRelatedWork W4386462264 @default.
- W3005350407 hasVolume "8" @default.
- W3005350407 isParatext "false" @default.
- W3005350407 isRetracted "false" @default.
- W3005350407 magId "3005350407" @default.
- W3005350407 workType "article" @default.