Matches in SemOpenAlex for { <https://semopenalex.org/work/W3005354332> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W3005354332 abstract "We build an emotion recognition system based on Artificial Neural Network (ANN) and compare the same with the one based upon the Gaussian Mixture Modeling (GMM) scheme. Both the systems were built upon probabilistic pattern recognition and acoustic phonetic modelling approaches. Since our native language is Kannada, one of the very rich Indian language, we have used words uttered in Kannada to train and test the schemes. Since Mel Frequency Cepstral Coefficients (MFCC) are well known acoustic features of speech [1] [2] [4], we have used the Delta MFCC and the Double Delta MFCC vectors in speech feature extraction. Finally, performance analysis of these models in terms of Emotion Error Rate (EER) justifies the fact that modeling using the ANN yields better results over other modeling schemes and can be used in developing Automatic Emotion Recognition systems." @default.
- W3005354332 created "2020-02-14" @default.
- W3005354332 creator A5050994961 @default.
- W3005354332 creator A5087216553 @default.
- W3005354332 date "2019-08-01" @default.
- W3005354332 modified "2023-09-26" @default.
- W3005354332 title "Comparison of Artificial Neural Network and Gaussian Mixture Model Based Machine Learning Techniques Using DDMFCC Vectors for Emotion Recognition in Kannada" @default.
- W3005354332 cites W1512197020 @default.
- W3005354332 cites W1523719202 @default.
- W3005354332 cites W1967754766 @default.
- W3005354332 cites W1968980933 @default.
- W3005354332 cites W2013325416 @default.
- W3005354332 cites W2043934928 @default.
- W3005354332 cites W2054502509 @default.
- W3005354332 cites W2130509597 @default.
- W3005354332 cites W2135933868 @default.
- W3005354332 cites W2170500887 @default.
- W3005354332 cites W2247381151 @default.
- W3005354332 cites W2537287150 @default.
- W3005354332 cites W2735746628 @default.
- W3005354332 cites W2808683047 @default.
- W3005354332 doi "https://doi.org/10.1109/iementech48150.2019.8981386" @default.
- W3005354332 hasPublicationYear "2019" @default.
- W3005354332 type Work @default.
- W3005354332 sameAs 3005354332 @default.
- W3005354332 citedByCount "3" @default.
- W3005354332 countsByYear W30053543322020 @default.
- W3005354332 countsByYear W30053543322023 @default.
- W3005354332 crossrefType "proceedings-article" @default.
- W3005354332 hasAuthorship W3005354332A5050994961 @default.
- W3005354332 hasAuthorship W3005354332A5087216553 @default.
- W3005354332 hasConcept C114289077 @default.
- W3005354332 hasConcept C12267149 @default.
- W3005354332 hasConcept C151989614 @default.
- W3005354332 hasConcept C153180895 @default.
- W3005354332 hasConcept C154945302 @default.
- W3005354332 hasConcept C23224414 @default.
- W3005354332 hasConcept C28490314 @default.
- W3005354332 hasConcept C40969351 @default.
- W3005354332 hasConcept C41008148 @default.
- W3005354332 hasConcept C50644808 @default.
- W3005354332 hasConcept C52622490 @default.
- W3005354332 hasConcept C61224824 @default.
- W3005354332 hasConcept C83665646 @default.
- W3005354332 hasConceptScore W3005354332C114289077 @default.
- W3005354332 hasConceptScore W3005354332C12267149 @default.
- W3005354332 hasConceptScore W3005354332C151989614 @default.
- W3005354332 hasConceptScore W3005354332C153180895 @default.
- W3005354332 hasConceptScore W3005354332C154945302 @default.
- W3005354332 hasConceptScore W3005354332C23224414 @default.
- W3005354332 hasConceptScore W3005354332C28490314 @default.
- W3005354332 hasConceptScore W3005354332C40969351 @default.
- W3005354332 hasConceptScore W3005354332C41008148 @default.
- W3005354332 hasConceptScore W3005354332C50644808 @default.
- W3005354332 hasConceptScore W3005354332C52622490 @default.
- W3005354332 hasConceptScore W3005354332C61224824 @default.
- W3005354332 hasConceptScore W3005354332C83665646 @default.
- W3005354332 hasLocation W30053543321 @default.
- W3005354332 hasOpenAccess W3005354332 @default.
- W3005354332 hasPrimaryLocation W30053543321 @default.
- W3005354332 hasRelatedWork W1512197020 @default.
- W3005354332 hasRelatedWork W1545439361 @default.
- W3005354332 hasRelatedWork W1971793356 @default.
- W3005354332 hasRelatedWork W1981297204 @default.
- W3005354332 hasRelatedWork W2022138388 @default.
- W3005354332 hasRelatedWork W2098258572 @default.
- W3005354332 hasRelatedWork W2365282522 @default.
- W3005354332 hasRelatedWork W2375198324 @default.
- W3005354332 hasRelatedWork W2508937276 @default.
- W3005354332 hasRelatedWork W4244902868 @default.
- W3005354332 isParatext "false" @default.
- W3005354332 isRetracted "false" @default.
- W3005354332 magId "3005354332" @default.
- W3005354332 workType "article" @default.