Matches in SemOpenAlex for { <https://semopenalex.org/work/W3005431696> ?p ?o ?g. }
- W3005431696 endingPage "162289" @default.
- W3005431696 startingPage "162279" @default.
- W3005431696 abstract "Networks-based models have been used to represent and analyse datasets in many fields such as computational biology, medical informatics and social networks. Nevertheless, it has been recently shown that, in their standard form, they are unable to capture some aspects of the investigated scenarios. Thus, more complex and enriched models, such as heterogeneous networks or dual networks, have been proposed. We focus on the latter model, which consists of a pair of networks having the same nodes but different edges. In dual networks, one network, called physical, has unweighted edges representing binary associations among nodes. The other is an edge-weighted one where weights represent the strength of the associations among nodes. Dual networks capture in a single model some aspects that cannot be described by using a standard model. Dual networks can be used, for instance, to capture a co-authorships network, where physical network represents co-authors. In contrast, the conceptual network is used to model topics sharing among a couple of authors by means of edge connections. This allows capturing similar interests among authors even though they are not co-authors. We propose an innovative algorithm to find the Densest Connected Subgraph (DCS) in dual networks. DCS is the largest density subgraph in the conceptual network, which is also connected in the physical network. A DCS represents a set of highly similar nodes. Moreover, since DCS is a computationally hard problem, we propose novel heuristics to solve it. We tested the proposed algorithm on social, biological, and co-authorship networks. Results demonstrate that our approach is efficient and is able to extract meaningful information from dual networks." @default.
- W3005431696 created "2020-02-14" @default.
- W3005431696 creator A5015577795 @default.
- W3005431696 creator A5027369094 @default.
- W3005431696 creator A5037399554 @default.
- W3005431696 creator A5087181065 @default.
- W3005431696 date "2020-01-01" @default.
- W3005431696 modified "2023-10-14" @default.
- W3005431696 title "Extracting Dense and Connected Communities in Dual Networks: An Alignment Based Algorithm" @default.
- W3005431696 cites W1500512125 @default.
- W3005431696 cites W1501644705 @default.
- W3005431696 cites W1535144194 @default.
- W3005431696 cites W1562370653 @default.
- W3005431696 cites W1686696692 @default.
- W3005431696 cites W1829941681 @default.
- W3005431696 cites W1966631994 @default.
- W3005431696 cites W1984209790 @default.
- W3005431696 cites W1984249061 @default.
- W3005431696 cites W2016305540 @default.
- W3005431696 cites W2029382089 @default.
- W3005431696 cites W2032279394 @default.
- W3005431696 cites W2043795984 @default.
- W3005431696 cites W2048605133 @default.
- W3005431696 cites W2070071277 @default.
- W3005431696 cites W2082603400 @default.
- W3005431696 cites W2094189284 @default.
- W3005431696 cites W2097795961 @default.
- W3005431696 cites W2099364528 @default.
- W3005431696 cites W2110953678 @default.
- W3005431696 cites W2119021615 @default.
- W3005431696 cites W2123733630 @default.
- W3005431696 cites W2131298592 @default.
- W3005431696 cites W2136850043 @default.
- W3005431696 cites W2139027526 @default.
- W3005431696 cites W2140084895 @default.
- W3005431696 cites W2160556205 @default.
- W3005431696 cites W2168474259 @default.
- W3005431696 cites W2217968126 @default.
- W3005431696 cites W2341328930 @default.
- W3005431696 cites W2534495228 @default.
- W3005431696 cites W2569705007 @default.
- W3005431696 cites W2621160082 @default.
- W3005431696 cites W2906458786 @default.
- W3005431696 cites W3009975428 @default.
- W3005431696 doi "https://doi.org/10.1109/access.2020.3020924" @default.
- W3005431696 hasPublicationYear "2020" @default.
- W3005431696 type Work @default.
- W3005431696 sameAs 3005431696 @default.
- W3005431696 citedByCount "5" @default.
- W3005431696 countsByYear W30054316962021 @default.
- W3005431696 countsByYear W30054316962022 @default.
- W3005431696 crossrefType "journal-article" @default.
- W3005431696 hasAuthorship W3005431696A5015577795 @default.
- W3005431696 hasAuthorship W3005431696A5027369094 @default.
- W3005431696 hasAuthorship W3005431696A5037399554 @default.
- W3005431696 hasAuthorship W3005431696A5087181065 @default.
- W3005431696 hasBestOaLocation W30054316961 @default.
- W3005431696 hasConcept C111919701 @default.
- W3005431696 hasConcept C11413529 @default.
- W3005431696 hasConcept C114614502 @default.
- W3005431696 hasConcept C120665830 @default.
- W3005431696 hasConcept C121332964 @default.
- W3005431696 hasConcept C124101348 @default.
- W3005431696 hasConcept C124952713 @default.
- W3005431696 hasConcept C127705205 @default.
- W3005431696 hasConcept C136764020 @default.
- W3005431696 hasConcept C142362112 @default.
- W3005431696 hasConcept C154945302 @default.
- W3005431696 hasConcept C162307627 @default.
- W3005431696 hasConcept C177264268 @default.
- W3005431696 hasConcept C192209626 @default.
- W3005431696 hasConcept C199360897 @default.
- W3005431696 hasConcept C2780980858 @default.
- W3005431696 hasConcept C28225019 @default.
- W3005431696 hasConcept C33923547 @default.
- W3005431696 hasConcept C34947359 @default.
- W3005431696 hasConcept C36647736 @default.
- W3005431696 hasConcept C41008148 @default.
- W3005431696 hasConcept C80444323 @default.
- W3005431696 hasConceptScore W3005431696C111919701 @default.
- W3005431696 hasConceptScore W3005431696C11413529 @default.
- W3005431696 hasConceptScore W3005431696C114614502 @default.
- W3005431696 hasConceptScore W3005431696C120665830 @default.
- W3005431696 hasConceptScore W3005431696C121332964 @default.
- W3005431696 hasConceptScore W3005431696C124101348 @default.
- W3005431696 hasConceptScore W3005431696C124952713 @default.
- W3005431696 hasConceptScore W3005431696C127705205 @default.
- W3005431696 hasConceptScore W3005431696C136764020 @default.
- W3005431696 hasConceptScore W3005431696C142362112 @default.
- W3005431696 hasConceptScore W3005431696C154945302 @default.
- W3005431696 hasConceptScore W3005431696C162307627 @default.
- W3005431696 hasConceptScore W3005431696C177264268 @default.
- W3005431696 hasConceptScore W3005431696C192209626 @default.
- W3005431696 hasConceptScore W3005431696C199360897 @default.
- W3005431696 hasConceptScore W3005431696C2780980858 @default.
- W3005431696 hasConceptScore W3005431696C28225019 @default.
- W3005431696 hasConceptScore W3005431696C33923547 @default.
- W3005431696 hasConceptScore W3005431696C34947359 @default.