Matches in SemOpenAlex for { <https://semopenalex.org/work/W3005433241> ?p ?o ?g. }
- W3005433241 endingPage "100007" @default.
- W3005433241 startingPage "100007" @default.
- W3005433241 abstract "For decades, Friction Stir Welding (FSW) has been used to decrease the weight of structures. During this time the application of the curved surfaces has been extensively increasing in numerous applications like FSW, 5 axis milling computer numerical controlled (CNC) machines, and elsewhere. However, for finite element modeling of the abovementioned operations, difficulty arises in defining the tool's perpendicular movement on the curved surface because the basic principle of the finite element software is based on a single point movement for the tool. To explain the difficulty, the tool should follow a pattern and has to have a position perpendicular to the surface at each point, however because of the modeling difficulties the literature simulated only the tool's single point movement. Consequently, the software should be modified for accurately simulating a representation of perpendicular movement. In this paper Altair HyperworksⓇ and ABAQUSⓇ software are employed to simulate the process on a curved plate. Mathematical formulations solve the governing equations of the perpendicular tool movement (movement in X direction, Y direction and the angular movement). Then, VDISP user-defined subroutine and the optimized input parameters (from the previous part) are incorporated in the software for analyzing the FSW thermal behavior on a curved surface. It should be noted that, the letter “V” shows the analysis type that is explicit and “DISP” indicates that this subroutine can be appropriate when complicated displacement boundary conditions should be applied to the model. The results showed that there is a significant increase for heat generation, resulting in the expansion of the shear zone. That leads to a peak temperature of almost 300 °C after 3 s. During the dwelling step (t = 3 s to t = 5 s), the generated heat was stable and the shoulder moved the material up, because the material velocity at the upper surface is higher. In addition, a non-symmetrical temperature distribution is found at the cross section. By the end of the welding (t = 12.8 s), the temperature pattern was asymmetrical, while at the step time of 19.6 s an asymmetrical temperature was observed. Consequently, the outcomes of this paper indicates that the model agrees well with the literature." @default.
- W3005433241 created "2020-02-14" @default.
- W3005433241 creator A5007506428 @default.
- W3005433241 creator A5020006533 @default.
- W3005433241 creator A5061905125 @default.
- W3005433241 date "2020-03-01" @default.
- W3005433241 modified "2023-10-12" @default.
- W3005433241 title "Finite element modeling of friction stir welding (FSW) on a complex curved plate" @default.
- W3005433241 cites W1969379843 @default.
- W3005433241 cites W1972141488 @default.
- W3005433241 cites W1982495437 @default.
- W3005433241 cites W1983013823 @default.
- W3005433241 cites W1984395332 @default.
- W3005433241 cites W2003172946 @default.
- W3005433241 cites W2010039920 @default.
- W3005433241 cites W2024967908 @default.
- W3005433241 cites W2030963469 @default.
- W3005433241 cites W2031207722 @default.
- W3005433241 cites W2040492601 @default.
- W3005433241 cites W2053596733 @default.
- W3005433241 cites W2062816866 @default.
- W3005433241 cites W2063948397 @default.
- W3005433241 cites W2068402509 @default.
- W3005433241 cites W2075497415 @default.
- W3005433241 cites W2089656691 @default.
- W3005433241 cites W2152577640 @default.
- W3005433241 cites W2162856858 @default.
- W3005433241 cites W2208635013 @default.
- W3005433241 cites W2522096318 @default.
- W3005433241 cites W2551534908 @default.
- W3005433241 cites W2572740883 @default.
- W3005433241 cites W2755072896 @default.
- W3005433241 cites W2766936111 @default.
- W3005433241 cites W2770490004 @default.
- W3005433241 cites W2793865729 @default.
- W3005433241 cites W2802457851 @default.
- W3005433241 cites W2896883874 @default.
- W3005433241 cites W2899957505 @default.
- W3005433241 doi "https://doi.org/10.1016/j.jajp.2020.100007" @default.
- W3005433241 hasPublicationYear "2020" @default.
- W3005433241 type Work @default.
- W3005433241 sameAs 3005433241 @default.
- W3005433241 citedByCount "15" @default.
- W3005433241 countsByYear W30054332412021 @default.
- W3005433241 countsByYear W30054332412022 @default.
- W3005433241 countsByYear W30054332412023 @default.
- W3005433241 crossrefType "journal-article" @default.
- W3005433241 hasAuthorship W3005433241A5007506428 @default.
- W3005433241 hasAuthorship W3005433241A5020006533 @default.
- W3005433241 hasAuthorship W3005433241A5061905125 @default.
- W3005433241 hasBestOaLocation W30054332411 @default.
- W3005433241 hasConcept C10138342 @default.
- W3005433241 hasConcept C107551265 @default.
- W3005433241 hasConcept C108439606 @default.
- W3005433241 hasConcept C111919701 @default.
- W3005433241 hasConcept C127413603 @default.
- W3005433241 hasConcept C134306372 @default.
- W3005433241 hasConcept C135628077 @default.
- W3005433241 hasConcept C15744967 @default.
- W3005433241 hasConcept C162324750 @default.
- W3005433241 hasConcept C19474535 @default.
- W3005433241 hasConcept C198082294 @default.
- W3005433241 hasConcept C199360897 @default.
- W3005433241 hasConcept C199631012 @default.
- W3005433241 hasConcept C2524010 @default.
- W3005433241 hasConcept C2776799497 @default.
- W3005433241 hasConcept C2777904410 @default.
- W3005433241 hasConcept C33923547 @default.
- W3005433241 hasConcept C40367268 @default.
- W3005433241 hasConcept C41008148 @default.
- W3005433241 hasConcept C542102704 @default.
- W3005433241 hasConcept C62354387 @default.
- W3005433241 hasConcept C66938386 @default.
- W3005433241 hasConcept C78519656 @default.
- W3005433241 hasConcept C96147967 @default.
- W3005433241 hasConceptScore W3005433241C10138342 @default.
- W3005433241 hasConceptScore W3005433241C107551265 @default.
- W3005433241 hasConceptScore W3005433241C108439606 @default.
- W3005433241 hasConceptScore W3005433241C111919701 @default.
- W3005433241 hasConceptScore W3005433241C127413603 @default.
- W3005433241 hasConceptScore W3005433241C134306372 @default.
- W3005433241 hasConceptScore W3005433241C135628077 @default.
- W3005433241 hasConceptScore W3005433241C15744967 @default.
- W3005433241 hasConceptScore W3005433241C162324750 @default.
- W3005433241 hasConceptScore W3005433241C19474535 @default.
- W3005433241 hasConceptScore W3005433241C198082294 @default.
- W3005433241 hasConceptScore W3005433241C199360897 @default.
- W3005433241 hasConceptScore W3005433241C199631012 @default.
- W3005433241 hasConceptScore W3005433241C2524010 @default.
- W3005433241 hasConceptScore W3005433241C2776799497 @default.
- W3005433241 hasConceptScore W3005433241C2777904410 @default.
- W3005433241 hasConceptScore W3005433241C33923547 @default.
- W3005433241 hasConceptScore W3005433241C40367268 @default.
- W3005433241 hasConceptScore W3005433241C41008148 @default.
- W3005433241 hasConceptScore W3005433241C542102704 @default.
- W3005433241 hasConceptScore W3005433241C62354387 @default.
- W3005433241 hasConceptScore W3005433241C66938386 @default.
- W3005433241 hasConceptScore W3005433241C78519656 @default.