Matches in SemOpenAlex for { <https://semopenalex.org/work/W3005467546> ?p ?o ?g. }
- W3005467546 endingPage "1669" @default.
- W3005467546 startingPage "1659" @default.
- W3005467546 abstract "Degenerative cervical myelopathy (DCM) is the most common cause of spinal cord dysfunction worldwide. Current guidelines recommend management based on the severity of myelopathy, measured by the modified Japanese Orthopedic Association (mJOA) score. Patients with moderate to severe myelopathy, defined by an mJOA below 15, are recommended to undergo surgery. However, the management for mild myelopathy (mJOA between 15 and 17) is controversial since the response to surgery is more heterogeneous.To develop machine learning algorithms predicting phenotypes of mild myelopathy patients that would benefit most from surgery.Retrospective subgroup analysis of prospectively collected data.Data were obtained from 193 mild DCM patients who underwent surgical decompression and were enrolled in the multicenter AOSpine CSM clinical trials.The mJOA score, an assessment of functional status, was used to isolate patients with mild DCM. The primary outcome measures were change from baseline for the Short Form-36 (SF-36) mental component summary (MCS) and physical component summary (PCS) at 1-year postsurgery. These changes were dichotomized according to whether they exceeded the minimal clinically important difference.The data were split into training (75%) and testing (25%) sets. Model predictors included baseline demographic variables and clinical presentation. Seven machine learning algorithms and a logistic regression model were trained and optimized using the training set, and their performances were evaluated using the testing set. For each outcome (improvement in MCS or PCS), the machine learning algorithm with the greatest area under the curve (AUC) on the training set was selected for further analysis.The generalized boosted model (GBM) and earth models performed well in the prediction of significant improvement in MCS and PCS respectively, with AUCs of 0.72 to 0.78 on the training set. This performance was replicated on the testing set, in which the GBM and earth models showed AUCs of 0.77 and 0.78, respectively, as well as fair to good calibration across the predicted range of probabilities. Female patients with a low initial MCS were less likely to experience significant improvement in MCS than males. The presence of certain signs and symptoms (eg, lower limb spasticity, clumsy hands) were also predictive of worse outcome.Machine learning models showed good predictive power and provided information about the phenotypes of mild DCM patients most likely to benefit from surgical intervention. Overall, machine learning may be a useful tool for management of mild DCM, though external validation and prospective analysis should be performed to better solidify its role." @default.
- W3005467546 created "2020-02-14" @default.
- W3005467546 creator A5017354782 @default.
- W3005467546 creator A5060657797 @default.
- W3005467546 creator A5068463426 @default.
- W3005467546 creator A5070195374 @default.
- W3005467546 creator A5077943043 @default.
- W3005467546 date "2021-10-01" @default.
- W3005467546 modified "2023-09-25" @default.
- W3005467546 title "Machine learning algorithms for prediction of health-related quality-of-life after surgery for mild degenerative cervical myelopathy" @default.
- W3005467546 cites W13034104 @default.
- W3005467546 cites W1978777136 @default.
- W3005467546 cites W1985029090 @default.
- W3005467546 cites W1992934295 @default.
- W3005467546 cites W1996053693 @default.
- W3005467546 cites W2001414937 @default.
- W3005467546 cites W2006370395 @default.
- W3005467546 cites W2024046085 @default.
- W3005467546 cites W2043748208 @default.
- W3005467546 cites W2053236630 @default.
- W3005467546 cites W2068141066 @default.
- W3005467546 cites W2073503722 @default.
- W3005467546 cites W2074027434 @default.
- W3005467546 cites W2101753544 @default.
- W3005467546 cites W2111326438 @default.
- W3005467546 cites W2111521308 @default.
- W3005467546 cites W2147246271 @default.
- W3005467546 cites W2155295781 @default.
- W3005467546 cites W2159585023 @default.
- W3005467546 cites W2227550344 @default.
- W3005467546 cites W2322344580 @default.
- W3005467546 cites W2409739598 @default.
- W3005467546 cites W2461697952 @default.
- W3005467546 cites W2511947643 @default.
- W3005467546 cites W2529090292 @default.
- W3005467546 cites W2562251009 @default.
- W3005467546 cites W2618522203 @default.
- W3005467546 cites W2753629539 @default.
- W3005467546 cites W2769679568 @default.
- W3005467546 cites W2784094750 @default.
- W3005467546 cites W2800646036 @default.
- W3005467546 cites W2885070421 @default.
- W3005467546 cites W2911964244 @default.
- W3005467546 cites W4292195417 @default.
- W3005467546 cites W4292806894 @default.
- W3005467546 doi "https://doi.org/10.1016/j.spinee.2020.02.003" @default.
- W3005467546 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32045708" @default.
- W3005467546 hasPublicationYear "2021" @default.
- W3005467546 type Work @default.
- W3005467546 sameAs 3005467546 @default.
- W3005467546 citedByCount "26" @default.
- W3005467546 countsByYear W30054675462020 @default.
- W3005467546 countsByYear W30054675462021 @default.
- W3005467546 countsByYear W30054675462022 @default.
- W3005467546 countsByYear W30054675462023 @default.
- W3005467546 crossrefType "journal-article" @default.
- W3005467546 hasAuthorship W3005467546A5017354782 @default.
- W3005467546 hasAuthorship W3005467546A5060657797 @default.
- W3005467546 hasAuthorship W3005467546A5068463426 @default.
- W3005467546 hasAuthorship W3005467546A5070195374 @default.
- W3005467546 hasAuthorship W3005467546A5077943043 @default.
- W3005467546 hasConcept C111278954 @default.
- W3005467546 hasConcept C11413529 @default.
- W3005467546 hasConcept C118552586 @default.
- W3005467546 hasConcept C119857082 @default.
- W3005467546 hasConcept C126322002 @default.
- W3005467546 hasConcept C141071460 @default.
- W3005467546 hasConcept C151956035 @default.
- W3005467546 hasConcept C159110408 @default.
- W3005467546 hasConcept C168563851 @default.
- W3005467546 hasConcept C1862650 @default.
- W3005467546 hasConcept C2777604421 @default.
- W3005467546 hasConcept C2779951463 @default.
- W3005467546 hasConcept C2780775167 @default.
- W3005467546 hasConcept C41008148 @default.
- W3005467546 hasConcept C68312169 @default.
- W3005467546 hasConcept C71924100 @default.
- W3005467546 hasConceptScore W3005467546C111278954 @default.
- W3005467546 hasConceptScore W3005467546C11413529 @default.
- W3005467546 hasConceptScore W3005467546C118552586 @default.
- W3005467546 hasConceptScore W3005467546C119857082 @default.
- W3005467546 hasConceptScore W3005467546C126322002 @default.
- W3005467546 hasConceptScore W3005467546C141071460 @default.
- W3005467546 hasConceptScore W3005467546C151956035 @default.
- W3005467546 hasConceptScore W3005467546C159110408 @default.
- W3005467546 hasConceptScore W3005467546C168563851 @default.
- W3005467546 hasConceptScore W3005467546C1862650 @default.
- W3005467546 hasConceptScore W3005467546C2777604421 @default.
- W3005467546 hasConceptScore W3005467546C2779951463 @default.
- W3005467546 hasConceptScore W3005467546C2780775167 @default.
- W3005467546 hasConceptScore W3005467546C41008148 @default.
- W3005467546 hasConceptScore W3005467546C68312169 @default.
- W3005467546 hasConceptScore W3005467546C71924100 @default.
- W3005467546 hasIssue "10" @default.
- W3005467546 hasLocation W30054675461 @default.
- W3005467546 hasLocation W30054675462 @default.
- W3005467546 hasOpenAccess W3005467546 @default.
- W3005467546 hasPrimaryLocation W30054675461 @default.