Matches in SemOpenAlex for { <https://semopenalex.org/work/W3005486352> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W3005486352 endingPage "107585" @default.
- W3005486352 startingPage "107585" @default.
- W3005486352 abstract "Roller bearings form key components in many machines and, as such, their health status can directly influence the operation of the entire machine. Acoustic signals collected from roller bearings contain information on their health status. Hence, acoustic-based fault diagnosis techniques can provide novel solutions as condition monitoring tools for roller bearings. Traditionally, acoustic fault diagnosis methods have been based on conventional signal processing methods in which prior expert knowledge has been required in order to extract and interpret the health information contained within the collected acoustic signals. As an alternative, deep learning methods can be used to obtain heath information from the collected signals by constructing ‘end-to-end’ models that do not rely on prior knowledge. These approaches have been successfully applied in the condition monitoring of industrial machinery. However, conventional deep learning methods can only learn features from the vertices of input data and thereby ignore the information contained in the relationships (edges) between vertices. In this paper, which combines graph convolution operators, graph coarsening methods, and graph pooling operations; a deep graph convolutional network (DGCN) based on graph theory is applied to deliver acoustic-based fault diagnosis of roller bearings. In the proposed method, the collected acoustic signals are first transformed into graphs with geometric structures. The edge weights represent the similarity between connected vertices, which enriches the input information and hence improves the classification accuracy of the deep learning methods applied. To verify the effectiveness of the proposed system, experiments with roller bearings of varying condition were carried out in the laboratory. The experimental results demonstrate that the DGCN method can be used to detect different kinds and severities of faults in roller bearings by learning from the constructed graphs. The results have been compared to those obtained using other, conventional, deep learning methods applied to the same datasets. These comparative tests demonstrate improved classification accuracy when using the DGCN method." @default.
- W3005486352 created "2020-02-14" @default.
- W3005486352 creator A5032168338 @default.
- W3005486352 creator A5053595098 @default.
- W3005486352 creator A5063815992 @default.
- W3005486352 creator A5071436911 @default.
- W3005486352 creator A5083570816 @default.
- W3005486352 date "2020-05-01" @default.
- W3005486352 modified "2023-10-16" @default.
- W3005486352 title "Intelligent acoustic-based fault diagnosis of roller bearings using a deep graph convolutional network" @default.
- W3005486352 cites W2006066756 @default.
- W3005486352 cites W2020851226 @default.
- W3005486352 cites W2101491865 @default.
- W3005486352 cites W2116341502 @default.
- W3005486352 cites W2135957668 @default.
- W3005486352 cites W2184192902 @default.
- W3005486352 cites W2219903032 @default.
- W3005486352 cites W2461729787 @default.
- W3005486352 cites W2464878551 @default.
- W3005486352 cites W2485614840 @default.
- W3005486352 cites W2594083602 @default.
- W3005486352 cites W2601590138 @default.
- W3005486352 cites W2744604411 @default.
- W3005486352 cites W2744790985 @default.
- W3005486352 cites W2747276445 @default.
- W3005486352 cites W2748511798 @default.
- W3005486352 cites W2762355244 @default.
- W3005486352 cites W2791694051 @default.
- W3005486352 cites W2792191775 @default.
- W3005486352 cites W2796431263 @default.
- W3005486352 cites W2798226695 @default.
- W3005486352 cites W2802130013 @default.
- W3005486352 cites W2887507616 @default.
- W3005486352 cites W2914403044 @default.
- W3005486352 cites W3100848837 @default.
- W3005486352 doi "https://doi.org/10.1016/j.measurement.2020.107585" @default.
- W3005486352 hasPublicationYear "2020" @default.
- W3005486352 type Work @default.
- W3005486352 sameAs 3005486352 @default.
- W3005486352 citedByCount "102" @default.
- W3005486352 countsByYear W30054863522020 @default.
- W3005486352 countsByYear W30054863522021 @default.
- W3005486352 countsByYear W30054863522022 @default.
- W3005486352 countsByYear W30054863522023 @default.
- W3005486352 crossrefType "journal-article" @default.
- W3005486352 hasAuthorship W3005486352A5032168338 @default.
- W3005486352 hasAuthorship W3005486352A5053595098 @default.
- W3005486352 hasAuthorship W3005486352A5063815992 @default.
- W3005486352 hasAuthorship W3005486352A5071436911 @default.
- W3005486352 hasAuthorship W3005486352A5083570816 @default.
- W3005486352 hasBestOaLocation W30054863522 @default.
- W3005486352 hasConcept C108583219 @default.
- W3005486352 hasConcept C11413529 @default.
- W3005486352 hasConcept C124101348 @default.
- W3005486352 hasConcept C127313418 @default.
- W3005486352 hasConcept C132525143 @default.
- W3005486352 hasConcept C153180895 @default.
- W3005486352 hasConcept C154945302 @default.
- W3005486352 hasConcept C165205528 @default.
- W3005486352 hasConcept C175551986 @default.
- W3005486352 hasConcept C41008148 @default.
- W3005486352 hasConcept C70437156 @default.
- W3005486352 hasConcept C80444323 @default.
- W3005486352 hasConcept C97385483 @default.
- W3005486352 hasConceptScore W3005486352C108583219 @default.
- W3005486352 hasConceptScore W3005486352C11413529 @default.
- W3005486352 hasConceptScore W3005486352C124101348 @default.
- W3005486352 hasConceptScore W3005486352C127313418 @default.
- W3005486352 hasConceptScore W3005486352C132525143 @default.
- W3005486352 hasConceptScore W3005486352C153180895 @default.
- W3005486352 hasConceptScore W3005486352C154945302 @default.
- W3005486352 hasConceptScore W3005486352C165205528 @default.
- W3005486352 hasConceptScore W3005486352C175551986 @default.
- W3005486352 hasConceptScore W3005486352C41008148 @default.
- W3005486352 hasConceptScore W3005486352C70437156 @default.
- W3005486352 hasConceptScore W3005486352C80444323 @default.
- W3005486352 hasConceptScore W3005486352C97385483 @default.
- W3005486352 hasFunder F4320321001 @default.
- W3005486352 hasFunder F4320322725 @default.
- W3005486352 hasLocation W30054863521 @default.
- W3005486352 hasLocation W30054863522 @default.
- W3005486352 hasOpenAccess W3005486352 @default.
- W3005486352 hasPrimaryLocation W30054863521 @default.
- W3005486352 hasRelatedWork W1530536511 @default.
- W3005486352 hasRelatedWork W1974618110 @default.
- W3005486352 hasRelatedWork W2165991108 @default.
- W3005486352 hasRelatedWork W2565516711 @default.
- W3005486352 hasRelatedWork W2585432886 @default.
- W3005486352 hasRelatedWork W2770760954 @default.
- W3005486352 hasRelatedWork W3004069267 @default.
- W3005486352 hasRelatedWork W3082895349 @default.
- W3005486352 hasRelatedWork W4293718213 @default.
- W3005486352 hasRelatedWork W4327774331 @default.
- W3005486352 hasVolume "156" @default.
- W3005486352 isParatext "false" @default.
- W3005486352 isRetracted "false" @default.
- W3005486352 magId "3005486352" @default.
- W3005486352 workType "article" @default.