Matches in SemOpenAlex for { <https://semopenalex.org/work/W3005495200> ?p ?o ?g. }
- W3005495200 abstract "Abstract Nationwide population-based cohort provides a new opportunity to build a completely automated risk prediction model based on individuals’ history of health and healthcare beyond existing risk prediction models. We tested the possibility of machine learning models to predict future incidence of Alzheimer’s disease (AD) using large-scale administrative health data. From the Korean National Health Insurance Service database between 2002 and 2010, we obtained de-identified health data in elders above 65 years (N=40,736) containing 4,894 unique clinical features including ICD-10 codes, medication codes, laboratory values, history of personal and family illness, and socio-demographics. To define incident AD two operational definitions were considered: “definite AD” with diagnostic codes and dementia medication (n=614) and “probable AD” with only diagnosis (n=2,026). We trained and validated a random forest, support vector machine, and logistic regression to predict incident AD in 1,2,3, and 4 subsequent years. For predicting future incidence of AD in balanced samples (bootstrapping), the machine learning models showed reasonable performance in 1-year prediction with AUC of 0.775 and 0.759, based on “definite AD” and “probable AD” outcomes, respectively; in 2-year, 0.730 and 0.693; in 3-year, 0.677 and 0.644; in 4-year, 0.725 and 0.683. The results were similar when the entire (unbalanced) samples were used. Important clinical features selected in logistic regression included hemoglobin level, age, and urine protein level. This study may shed a light on the utility of the data-driven machine learning model based on large-scale administrative health data in AD risk prediction, which may enable better selection of individuals at risk for AD in clinical trials or early detection in clinical settings." @default.
- W3005495200 created "2020-02-14" @default.
- W3005495200 creator A5004961175 @default.
- W3005495200 creator A5013876923 @default.
- W3005495200 creator A5033979262 @default.
- W3005495200 creator A5044353469 @default.
- W3005495200 creator A5048176207 @default.
- W3005495200 creator A5072249558 @default.
- W3005495200 creator A5080756118 @default.
- W3005495200 creator A5088000244 @default.
- W3005495200 creator A5088797464 @default.
- W3005495200 date "2019-05-02" @default.
- W3005495200 modified "2023-10-16" @default.
- W3005495200 title "Machine Learning Prediction of Incidence of Alzheimer’s Disease Using Large-Scale Administrative Health Data" @default.
- W3005495200 cites W1506157423 @default.
- W3005495200 cites W1569322847 @default.
- W3005495200 cites W1969389830 @default.
- W3005495200 cites W1976900794 @default.
- W3005495200 cites W1978292822 @default.
- W3005495200 cites W2006677116 @default.
- W3005495200 cites W2008699078 @default.
- W3005495200 cites W2017178741 @default.
- W3005495200 cites W2024052923 @default.
- W3005495200 cites W2025963352 @default.
- W3005495200 cites W2031148567 @default.
- W3005495200 cites W2032698104 @default.
- W3005495200 cites W2053674001 @default.
- W3005495200 cites W2073306959 @default.
- W3005495200 cites W2098500495 @default.
- W3005495200 cites W2098706789 @default.
- W3005495200 cites W2119479037 @default.
- W3005495200 cites W2120751691 @default.
- W3005495200 cites W2125993125 @default.
- W3005495200 cites W2154602986 @default.
- W3005495200 cites W2157784421 @default.
- W3005495200 cites W2164586215 @default.
- W3005495200 cites W2341326607 @default.
- W3005495200 cites W2509531641 @default.
- W3005495200 cites W2525984666 @default.
- W3005495200 cites W2563736285 @default.
- W3005495200 cites W2773143320 @default.
- W3005495200 cites W2781322191 @default.
- W3005495200 cites W2784745639 @default.
- W3005495200 cites W2790360578 @default.
- W3005495200 cites W2794273998 @default.
- W3005495200 cites W2887701645 @default.
- W3005495200 cites W2889217150 @default.
- W3005495200 cites W2889242407 @default.
- W3005495200 cites W2900286268 @default.
- W3005495200 cites W2924338030 @default.
- W3005495200 cites W3098949126 @default.
- W3005495200 doi "https://doi.org/10.1101/625582" @default.
- W3005495200 hasPublicationYear "2019" @default.
- W3005495200 type Work @default.
- W3005495200 sameAs 3005495200 @default.
- W3005495200 citedByCount "4" @default.
- W3005495200 countsByYear W30054952002020 @default.
- W3005495200 countsByYear W30054952002021 @default.
- W3005495200 countsByYear W30054952002023 @default.
- W3005495200 crossrefType "posted-content" @default.
- W3005495200 hasAuthorship W3005495200A5004961175 @default.
- W3005495200 hasAuthorship W3005495200A5013876923 @default.
- W3005495200 hasAuthorship W3005495200A5033979262 @default.
- W3005495200 hasAuthorship W3005495200A5044353469 @default.
- W3005495200 hasAuthorship W3005495200A5048176207 @default.
- W3005495200 hasAuthorship W3005495200A5072249558 @default.
- W3005495200 hasAuthorship W3005495200A5080756118 @default.
- W3005495200 hasAuthorship W3005495200A5088000244 @default.
- W3005495200 hasAuthorship W3005495200A5088797464 @default.
- W3005495200 hasBestOaLocation W30054952001 @default.
- W3005495200 hasConcept C119857082 @default.
- W3005495200 hasConcept C126322002 @default.
- W3005495200 hasConcept C149782125 @default.
- W3005495200 hasConcept C151956035 @default.
- W3005495200 hasConcept C154945302 @default.
- W3005495200 hasConcept C205649164 @default.
- W3005495200 hasConcept C207609745 @default.
- W3005495200 hasConcept C2524010 @default.
- W3005495200 hasConcept C2778755073 @default.
- W3005495200 hasConcept C2779134260 @default.
- W3005495200 hasConcept C2779483572 @default.
- W3005495200 hasConcept C2908647359 @default.
- W3005495200 hasConcept C33923547 @default.
- W3005495200 hasConcept C41008148 @default.
- W3005495200 hasConcept C58640448 @default.
- W3005495200 hasConcept C61511704 @default.
- W3005495200 hasConcept C71924100 @default.
- W3005495200 hasConcept C72563966 @default.
- W3005495200 hasConcept C84525736 @default.
- W3005495200 hasConcept C99454951 @default.
- W3005495200 hasConceptScore W3005495200C119857082 @default.
- W3005495200 hasConceptScore W3005495200C126322002 @default.
- W3005495200 hasConceptScore W3005495200C149782125 @default.
- W3005495200 hasConceptScore W3005495200C151956035 @default.
- W3005495200 hasConceptScore W3005495200C154945302 @default.
- W3005495200 hasConceptScore W3005495200C205649164 @default.
- W3005495200 hasConceptScore W3005495200C207609745 @default.
- W3005495200 hasConceptScore W3005495200C2524010 @default.
- W3005495200 hasConceptScore W3005495200C2778755073 @default.
- W3005495200 hasConceptScore W3005495200C2779134260 @default.