Matches in SemOpenAlex for { <https://semopenalex.org/work/W3005526303> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W3005526303 endingPage "1027" @default.
- W3005526303 startingPage "1022" @default.
- W3005526303 abstract "Ultra-reliable low-latency communication (URLLC) is one of the promising services offered by fifth-generation technology for an industrial wireless network. Moreover, reinforcement learning is gaining attention due to its potential to learn from observed as well as unobserved results. Industrial wireless nodes (IWNs) may vary dynamically due to inner or external variables and thus require a depreciation of the dispensable redesign of the network resource allocation. Traditional methods are explicitly programmed, making it difficult for networks to dynamically react. To overcome such a scenario, deep Q-learning (DQL)-based resource allocation strategies as per the learning of the experienced trade-offs' and interdependencies in IWN is proposed. The proposed findings indicate that the algorithm can find the best performing measures to improve the allocation of resources. Moreover, DQL further reinforces to achieve better control to have ultra-reliable and low-latency IWN. Extensive simulations show that the suggested technique leads to the distribution of URLLC resources in fairness manner. In addition, the authors also assess the impact on resource allocation by the DQL's inherent learning parameters." @default.
- W3005526303 created "2020-02-14" @default.
- W3005526303 creator A5014500294 @default.
- W3005526303 creator A5019789320 @default.
- W3005526303 creator A5064284827 @default.
- W3005526303 date "2020-04-01" @default.
- W3005526303 modified "2023-10-13" @default.
- W3005526303 title "Deep Q‐learning based resource allocation in industrial wireless networks for URLLC" @default.
- W3005526303 cites W1995875735 @default.
- W3005526303 cites W2281611560 @default.
- W3005526303 cites W2282757201 @default.
- W3005526303 cites W2616867685 @default.
- W3005526303 cites W2800759180 @default.
- W3005526303 cites W2885828982 @default.
- W3005526303 cites W2894100501 @default.
- W3005526303 cites W2901312569 @default.
- W3005526303 cites W2944821496 @default.
- W3005526303 cites W2950863887 @default.
- W3005526303 cites W2955841574 @default.
- W3005526303 cites W2963000651 @default.
- W3005526303 cites W2963250023 @default.
- W3005526303 cites W2963349765 @default.
- W3005526303 cites W2982319229 @default.
- W3005526303 cites W3102859365 @default.
- W3005526303 doi "https://doi.org/10.1049/iet-com.2019.1211" @default.
- W3005526303 hasPublicationYear "2020" @default.
- W3005526303 type Work @default.
- W3005526303 sameAs 3005526303 @default.
- W3005526303 citedByCount "8" @default.
- W3005526303 countsByYear W30055263032020 @default.
- W3005526303 countsByYear W30055263032021 @default.
- W3005526303 countsByYear W30055263032022 @default.
- W3005526303 countsByYear W30055263032023 @default.
- W3005526303 crossrefType "journal-article" @default.
- W3005526303 hasAuthorship W3005526303A5014500294 @default.
- W3005526303 hasAuthorship W3005526303A5019789320 @default.
- W3005526303 hasAuthorship W3005526303A5064284827 @default.
- W3005526303 hasBestOaLocation W30055263031 @default.
- W3005526303 hasConcept C108037233 @default.
- W3005526303 hasConcept C120314980 @default.
- W3005526303 hasConcept C154945302 @default.
- W3005526303 hasConcept C17744445 @default.
- W3005526303 hasConcept C185874996 @default.
- W3005526303 hasConcept C199539241 @default.
- W3005526303 hasConcept C29202148 @default.
- W3005526303 hasConcept C31258907 @default.
- W3005526303 hasConcept C41008148 @default.
- W3005526303 hasConcept C555944384 @default.
- W3005526303 hasConcept C76155785 @default.
- W3005526303 hasConcept C82876162 @default.
- W3005526303 hasConcept C97541855 @default.
- W3005526303 hasConceptScore W3005526303C108037233 @default.
- W3005526303 hasConceptScore W3005526303C120314980 @default.
- W3005526303 hasConceptScore W3005526303C154945302 @default.
- W3005526303 hasConceptScore W3005526303C17744445 @default.
- W3005526303 hasConceptScore W3005526303C185874996 @default.
- W3005526303 hasConceptScore W3005526303C199539241 @default.
- W3005526303 hasConceptScore W3005526303C29202148 @default.
- W3005526303 hasConceptScore W3005526303C31258907 @default.
- W3005526303 hasConceptScore W3005526303C41008148 @default.
- W3005526303 hasConceptScore W3005526303C555944384 @default.
- W3005526303 hasConceptScore W3005526303C76155785 @default.
- W3005526303 hasConceptScore W3005526303C82876162 @default.
- W3005526303 hasConceptScore W3005526303C97541855 @default.
- W3005526303 hasFunder F4320322349 @default.
- W3005526303 hasIssue "6" @default.
- W3005526303 hasLocation W30055263031 @default.
- W3005526303 hasOpenAccess W3005526303 @default.
- W3005526303 hasPrimaryLocation W30055263031 @default.
- W3005526303 hasRelatedWork W114687057 @default.
- W3005526303 hasRelatedWork W1994631104 @default.
- W3005526303 hasRelatedWork W2378306841 @default.
- W3005526303 hasRelatedWork W2749324135 @default.
- W3005526303 hasRelatedWork W2908433117 @default.
- W3005526303 hasRelatedWork W2969604939 @default.
- W3005526303 hasRelatedWork W3122988618 @default.
- W3005526303 hasRelatedWork W4306904969 @default.
- W3005526303 hasRelatedWork W4362501864 @default.
- W3005526303 hasRelatedWork W4380318855 @default.
- W3005526303 hasVolume "14" @default.
- W3005526303 isParatext "false" @default.
- W3005526303 isRetracted "false" @default.
- W3005526303 magId "3005526303" @default.
- W3005526303 workType "article" @default.