Matches in SemOpenAlex for { <https://semopenalex.org/work/W3005623292> ?p ?o ?g. }
- W3005623292 endingPage "7502" @default.
- W3005623292 startingPage "7493" @default.
- W3005623292 abstract "Video services have hold a surprising proportion of the whole network traffic in wireless communication networks. Accurate prediction of video traffic can endow networks with intelligence in resource management, especially for the forthcoming beyond the fifth-generation (B5G) networks. However, the existing approaches fail to accurately predict video traffic with all types of frames, due to the natures of strong long-range dependence, self-similarity and burstiness. Obviously, it is unable to meet the QoS and QoE requirements of dynamic bandwidth allocation. In this paper, we propose the feasibility of advanced machine learning methodology applied in nonstationary video traffic prediction, i.e., smoothing-aided support vector machine (SSVM) model. The model utilizes classical smoothing methods to preprocess video traffic by relieving the drastic fluctuation of video stream. It can provide an effective association for the subsequent support vector regression, as the preprocessed data becomes more smooth and continuous than the original unprocessed one. Experimental results show that our proposed model significantly outperforms the state of the art model, i.e., logistic smooth transition autoregressive, in prediction performance. The superior nonlinear approximation capacity is further demonstrated by visualized statistical analysis." @default.
- W3005623292 created "2020-02-24" @default.
- W3005623292 creator A5005920075 @default.
- W3005623292 creator A5017351306 @default.
- W3005623292 creator A5027367677 @default.
- W3005623292 creator A5029115319 @default.
- W3005623292 creator A5062527700 @default.
- W3005623292 creator A5074679034 @default.
- W3005623292 date "2020-07-01" @default.
- W3005623292 modified "2023-10-18" @default.
- W3005623292 title "Smoothing-Aided Support Vector Machine Based Nonstationary Video Traffic Prediction Towards B5G Networks" @default.
- W3005623292 cites W1507639870 @default.
- W3005623292 cites W1964357740 @default.
- W3005623292 cites W2024081693 @default.
- W3005623292 cites W2148360313 @default.
- W3005623292 cites W2215451109 @default.
- W3005623292 cites W2327946727 @default.
- W3005623292 cites W2341445292 @default.
- W3005623292 cites W2405206665 @default.
- W3005623292 cites W2491978341 @default.
- W3005623292 cites W2564341986 @default.
- W3005623292 cites W2566425973 @default.
- W3005623292 cites W2620303912 @default.
- W3005623292 cites W2623266823 @default.
- W3005623292 cites W2729222988 @default.
- W3005623292 cites W2758354799 @default.
- W3005623292 cites W2767151733 @default.
- W3005623292 cites W2772604758 @default.
- W3005623292 cites W2795578379 @default.
- W3005623292 cites W2803418695 @default.
- W3005623292 cites W2808769300 @default.
- W3005623292 cites W2808788196 @default.
- W3005623292 cites W2839844222 @default.
- W3005623292 cites W2886485362 @default.
- W3005623292 cites W2891388911 @default.
- W3005623292 cites W2891768968 @default.
- W3005623292 cites W2896666719 @default.
- W3005623292 cites W2907899041 @default.
- W3005623292 cites W2909095597 @default.
- W3005623292 cites W2911471242 @default.
- W3005623292 cites W2916238263 @default.
- W3005623292 cites W2920689385 @default.
- W3005623292 cites W2936900179 @default.
- W3005623292 cites W2953596346 @default.
- W3005623292 cites W2956537170 @default.
- W3005623292 cites W2962786421 @default.
- W3005623292 cites W2964121960 @default.
- W3005623292 cites W2966727109 @default.
- W3005623292 cites W2969964820 @default.
- W3005623292 cites W2971055251 @default.
- W3005623292 cites W2973233842 @default.
- W3005623292 cites W2973447016 @default.
- W3005623292 cites W2981598692 @default.
- W3005623292 cites W2987656958 @default.
- W3005623292 cites W2993809815 @default.
- W3005623292 cites W2997454486 @default.
- W3005623292 cites W2998106326 @default.
- W3005623292 cites W2998578058 @default.
- W3005623292 cites W3001637006 @default.
- W3005623292 cites W3003174479 @default.
- W3005623292 cites W3006541201 @default.
- W3005623292 cites W3016146955 @default.
- W3005623292 cites W3017367767 @default.
- W3005623292 cites W4239510810 @default.
- W3005623292 doi "https://doi.org/10.1109/tvt.2020.2993262" @default.
- W3005623292 hasPublicationYear "2020" @default.
- W3005623292 type Work @default.
- W3005623292 sameAs 3005623292 @default.
- W3005623292 citedByCount "18" @default.
- W3005623292 countsByYear W30056232922021 @default.
- W3005623292 countsByYear W30056232922022 @default.
- W3005623292 countsByYear W30056232922023 @default.
- W3005623292 crossrefType "journal-article" @default.
- W3005623292 hasAuthorship W3005623292A5005920075 @default.
- W3005623292 hasAuthorship W3005623292A5017351306 @default.
- W3005623292 hasAuthorship W3005623292A5027367677 @default.
- W3005623292 hasAuthorship W3005623292A5029115319 @default.
- W3005623292 hasAuthorship W3005623292A5062527700 @default.
- W3005623292 hasAuthorship W3005623292A5074679034 @default.
- W3005623292 hasBestOaLocation W30056232922 @default.
- W3005623292 hasConcept C119857082 @default.
- W3005623292 hasConcept C12267149 @default.
- W3005623292 hasConcept C124101348 @default.
- W3005623292 hasConcept C154945302 @default.
- W3005623292 hasConcept C31972630 @default.
- W3005623292 hasConcept C3770464 @default.
- W3005623292 hasConcept C41008148 @default.
- W3005623292 hasConceptScore W3005623292C119857082 @default.
- W3005623292 hasConceptScore W3005623292C12267149 @default.
- W3005623292 hasConceptScore W3005623292C124101348 @default.
- W3005623292 hasConceptScore W3005623292C154945302 @default.
- W3005623292 hasConceptScore W3005623292C31972630 @default.
- W3005623292 hasConceptScore W3005623292C3770464 @default.
- W3005623292 hasConceptScore W3005623292C41008148 @default.
- W3005623292 hasFunder F4320321001 @default.
- W3005623292 hasFunder F4320322163 @default.
- W3005623292 hasIssue "7" @default.
- W3005623292 hasLocation W30056232921 @default.