Matches in SemOpenAlex for { <https://semopenalex.org/work/W3005677144> ?p ?o ?g. }
- W3005677144 endingPage "1299" @default.
- W3005677144 startingPage "1291" @default.
- W3005677144 abstract "BackgroundMachine learning (ML) is increasingly being used in many areas of health care. Its use in infection management is catching up as identified in a recent review in this journal. We present here a complementary review to this work.ObjectivesTo support clinicians and researchers in navigating through the methodological aspects of ML approaches in the field of infection management.SourcesA Medline search was performed with the keywords artificial intelligence, machine learning, infection∗, and infectious disease∗ for the years 2014–2019. Studies using routinely available electronic hospital record data from an inpatient setting with a focus on bacterial and fungal infections were included.ContentFifty-two studies were included and divided into six groups based on their focus. These studies covered detection/prediction of sepsis (n = 19), hospital-acquired infections (n = 11), surgical site infections and other postoperative infections (n = 11), microbiological test results (n = 4), infections in general (n = 2), musculoskeletal infections (n = 2), and other topics (urinary tract infections, deep fungal infections, antimicrobial prescriptions; n = 1 each). In total, 35 different ML techniques were used. Logistic regression was applied in 18 studies followed by random forest, support vector machines, and artificial neural networks in 18, 12, and seven studies, respectively. Overall, the studies were very heterogeneous in their approach and their reporting. Detailed information on data handling and software code was often missing. Validation on new datasets and/or in other institutions was rarely done. Clinical studies on the impact of ML in infection management were lacking.ImplicationsPromising approaches for ML use in infectious diseases were identified. But building trust in these new technologies will require improved reporting. Explainability and interpretability of the models used were rarely addressed and should be further explored. Independent model validation and clinical studies evaluating the added value of ML approaches are needed." @default.
- W3005677144 created "2020-02-24" @default.
- W3005677144 creator A5022375262 @default.
- W3005677144 creator A5028950613 @default.
- W3005677144 creator A5033179889 @default.
- W3005677144 creator A5074321093 @default.
- W3005677144 creator A5077260135 @default.
- W3005677144 creator A5091360386 @default.
- W3005677144 date "2020-10-01" @default.
- W3005677144 modified "2023-10-16" @default.
- W3005677144 title "Machine learning in infection management using routine electronic health records: tools, techniques, and reporting of future technologies" @default.
- W3005677144 cites W1906965911 @default.
- W3005677144 cites W1977823755 @default.
- W3005677144 cites W2028338666 @default.
- W3005677144 cites W2146996430 @default.
- W3005677144 cites W2148761960 @default.
- W3005677144 cites W2163278718 @default.
- W3005677144 cites W2200122354 @default.
- W3005677144 cites W2205975271 @default.
- W3005677144 cites W2282133093 @default.
- W3005677144 cites W2346435289 @default.
- W3005677144 cites W2372800617 @default.
- W3005677144 cites W2396881363 @default.
- W3005677144 cites W2397397077 @default.
- W3005677144 cites W2406493898 @default.
- W3005677144 cites W2468793326 @default.
- W3005677144 cites W2520354316 @default.
- W3005677144 cites W2523834880 @default.
- W3005677144 cites W2567142519 @default.
- W3005677144 cites W2594917386 @default.
- W3005677144 cites W2625625371 @default.
- W3005677144 cites W2738975713 @default.
- W3005677144 cites W2748099698 @default.
- W3005677144 cites W2748885884 @default.
- W3005677144 cites W2750268731 @default.
- W3005677144 cites W2750557731 @default.
- W3005677144 cites W2750578123 @default.
- W3005677144 cites W2761040354 @default.
- W3005677144 cites W2768087388 @default.
- W3005677144 cites W2771902236 @default.
- W3005677144 cites W2772574661 @default.
- W3005677144 cites W2774594041 @default.
- W3005677144 cites W2786635213 @default.
- W3005677144 cites W2790216347 @default.
- W3005677144 cites W2790878695 @default.
- W3005677144 cites W2793576721 @default.
- W3005677144 cites W2793609878 @default.
- W3005677144 cites W2793676740 @default.
- W3005677144 cites W2796956438 @default.
- W3005677144 cites W2803760365 @default.
- W3005677144 cites W2807739974 @default.
- W3005677144 cites W2883463657 @default.
- W3005677144 cites W2887221563 @default.
- W3005677144 cites W2888528836 @default.
- W3005677144 cites W2896893468 @default.
- W3005677144 cites W2899678759 @default.
- W3005677144 cites W2899720878 @default.
- W3005677144 cites W2899856450 @default.
- W3005677144 cites W2901218091 @default.
- W3005677144 cites W2910297942 @default.
- W3005677144 cites W2912708252 @default.
- W3005677144 cites W2916140481 @default.
- W3005677144 cites W2923609912 @default.
- W3005677144 cites W2924232516 @default.
- W3005677144 cites W2936708417 @default.
- W3005677144 cites W2942961506 @default.
- W3005677144 cites W2944988359 @default.
- W3005677144 cites W2945976633 @default.
- W3005677144 cites W2955519429 @default.
- W3005677144 cites W2956091366 @default.
- W3005677144 cites W2956342844 @default.
- W3005677144 cites W2965313157 @default.
- W3005677144 cites W2966129221 @default.
- W3005677144 cites W2967844572 @default.
- W3005677144 cites W2973871066 @default.
- W3005677144 cites W2981869278 @default.
- W3005677144 cites W2995731403 @default.
- W3005677144 cites W3000127051 @default.
- W3005677144 cites W3045454797 @default.
- W3005677144 cites W3098949126 @default.
- W3005677144 cites W4233026002 @default.
- W3005677144 cites W4253563306 @default.
- W3005677144 cites W912612766 @default.
- W3005677144 doi "https://doi.org/10.1016/j.cmi.2020.02.003" @default.
- W3005677144 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32061798" @default.
- W3005677144 hasPublicationYear "2020" @default.
- W3005677144 type Work @default.
- W3005677144 sameAs 3005677144 @default.
- W3005677144 citedByCount "53" @default.
- W3005677144 countsByYear W30056771442020 @default.
- W3005677144 countsByYear W30056771442021 @default.
- W3005677144 countsByYear W30056771442022 @default.
- W3005677144 countsByYear W30056771442023 @default.
- W3005677144 crossrefType "journal-article" @default.
- W3005677144 hasAuthorship W3005677144A5022375262 @default.
- W3005677144 hasAuthorship W3005677144A5028950613 @default.
- W3005677144 hasAuthorship W3005677144A5033179889 @default.
- W3005677144 hasAuthorship W3005677144A5074321093 @default.