Matches in SemOpenAlex for { <https://semopenalex.org/work/W3005696092> ?p ?o ?g. }
- W3005696092 abstract "Recently, Generative Adversarial Networks (GANs) trained on samples of traditionally simulated collider events have been proposed as a way of generating larger simulated datasets at a reduced computational cost. In this paper we point out that data generated by a GAN cannot statistically be better than the data it was trained on, and critically examine the applicability of GANs in various situations, including a) for replacing the entire Monte Carlo pipeline or parts of it, and b) to produce datasets for usage in highly sensitive analyses or sub-optimal ones. We present our arguments using information theoretic demonstrations, a toy example, as well as in the form of a theorem, and identify some potential valid uses of GANs in collider simulations." @default.
- W3005696092 created "2020-02-24" @default.
- W3005696092 creator A5001566718 @default.
- W3005696092 creator A5029595453 @default.
- W3005696092 creator A5064389196 @default.
- W3005696092 date "2020-06-02" @default.
- W3005696092 modified "2023-09-27" @default.
- W3005696092 title "Uncertainties associated with GAN-generated datasets in high energy physics" @default.
- W3005696092 cites W1710476689 @default.
- W3005696092 cites W1749326941 @default.
- W3005696092 cites W1854299333 @default.
- W3005696092 cites W2045482954 @default.
- W3005696092 cites W2104386643 @default.
- W3005696092 cites W2125389028 @default.
- W3005696092 cites W2167589481 @default.
- W3005696092 cites W2346823692 @default.
- W3005696092 cites W2504545379 @default.
- W3005696092 cites W2614083378 @default.
- W3005696092 cites W2728024376 @default.
- W3005696092 cites W2775970449 @default.
- W3005696092 cites W2802434956 @default.
- W3005696092 cites W2805508261 @default.
- W3005696092 cites W2837143805 @default.
- W3005696092 cites W2889983866 @default.
- W3005696092 cites W2896116896 @default.
- W3005696092 cites W2909775062 @default.
- W3005696092 cites W2941870022 @default.
- W3005696092 cites W2951453584 @default.
- W3005696092 cites W2952177798 @default.
- W3005696092 cites W2962813633 @default.
- W3005696092 cites W2968330758 @default.
- W3005696092 cites W2973349625 @default.
- W3005696092 cites W2974766464 @default.
- W3005696092 cites W2974776260 @default.
- W3005696092 cites W2978792524 @default.
- W3005696092 cites W2990854796 @default.
- W3005696092 cites W2990924278 @default.
- W3005696092 cites W2994744586 @default.
- W3005696092 cites W2997966390 @default.
- W3005696092 cites W2999269502 @default.
- W3005696092 cites W2999655151 @default.
- W3005696092 cites W3000089959 @default.
- W3005696092 cites W3000095629 @default.
- W3005696092 cites W3003908413 @default.
- W3005696092 cites W3004387786 @default.
- W3005696092 cites W3096335005 @default.
- W3005696092 cites W3098353287 @default.
- W3005696092 cites W3099529633 @default.
- W3005696092 cites W3101355774 @default.
- W3005696092 cites W3103963833 @default.
- W3005696092 cites W3105020119 @default.
- W3005696092 cites W3105494006 @default.
- W3005696092 cites W3123025874 @default.
- W3005696092 cites W3132593943 @default.
- W3005696092 cites W3170550558 @default.
- W3005696092 cites W632087424 @default.
- W3005696092 hasPublicationYear "2020" @default.
- W3005696092 type Work @default.
- W3005696092 sameAs 3005696092 @default.
- W3005696092 citedByCount "1" @default.
- W3005696092 countsByYear W30056960922021 @default.
- W3005696092 crossrefType "posted-content" @default.
- W3005696092 hasAuthorship W3005696092A5001566718 @default.
- W3005696092 hasAuthorship W3005696092A5029595453 @default.
- W3005696092 hasAuthorship W3005696092A5064389196 @default.
- W3005696092 hasConcept C105795698 @default.
- W3005696092 hasConcept C109214941 @default.
- W3005696092 hasConcept C11413529 @default.
- W3005696092 hasConcept C119857082 @default.
- W3005696092 hasConcept C121332964 @default.
- W3005696092 hasConcept C124101348 @default.
- W3005696092 hasConcept C152290109 @default.
- W3005696092 hasConcept C154945302 @default.
- W3005696092 hasConcept C186370098 @default.
- W3005696092 hasConcept C19499675 @default.
- W3005696092 hasConcept C199360897 @default.
- W3005696092 hasConcept C2524010 @default.
- W3005696092 hasConcept C28719098 @default.
- W3005696092 hasConcept C33923547 @default.
- W3005696092 hasConcept C39890363 @default.
- W3005696092 hasConcept C41008148 @default.
- W3005696092 hasConcept C43521106 @default.
- W3005696092 hasConcept C62520636 @default.
- W3005696092 hasConcept C80444323 @default.
- W3005696092 hasConceptScore W3005696092C105795698 @default.
- W3005696092 hasConceptScore W3005696092C109214941 @default.
- W3005696092 hasConceptScore W3005696092C11413529 @default.
- W3005696092 hasConceptScore W3005696092C119857082 @default.
- W3005696092 hasConceptScore W3005696092C121332964 @default.
- W3005696092 hasConceptScore W3005696092C124101348 @default.
- W3005696092 hasConceptScore W3005696092C152290109 @default.
- W3005696092 hasConceptScore W3005696092C154945302 @default.
- W3005696092 hasConceptScore W3005696092C186370098 @default.
- W3005696092 hasConceptScore W3005696092C19499675 @default.
- W3005696092 hasConceptScore W3005696092C199360897 @default.
- W3005696092 hasConceptScore W3005696092C2524010 @default.
- W3005696092 hasConceptScore W3005696092C28719098 @default.
- W3005696092 hasConceptScore W3005696092C33923547 @default.
- W3005696092 hasConceptScore W3005696092C39890363 @default.
- W3005696092 hasConceptScore W3005696092C41008148 @default.