Matches in SemOpenAlex for { <https://semopenalex.org/work/W3005733487> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W3005733487 abstract "In the actual industrial process, some parameters have a great influence on the production results but it is difficult to measure directly. The only way to solve this kind of problem is to use soft measurement to predict the target value. The two factors that have the greatest influence on the accuracy of soft measurement are the auxiliary variable selection and modeling methods. In this paper, a soft measurement modeling method based on conditional mutual information and autoregressive neural network was proposed. First, a mechanism analysis of the production process was performed to determine a set of candidate auxiliary variables that affect the measurement. Then used the conditional mutual information to further filter the auxiliary variables from the candidate auxiliary variable set., and determined the minimum input variables set for the soft-measurement model while ensuring measurement accuracy. This paper taken the measurement process of NOx generation of a 600MW coal-fired power plant as an example, and established a soft-measurement model by using autoregressive neural network. The experimental results showed that the prediction accuracy of the model is significantly improved and had better generalization ability after the input variables are filtered by the conditional mutual information." @default.
- W3005733487 created "2020-02-24" @default.
- W3005733487 creator A5009194265 @default.
- W3005733487 creator A5042973046 @default.
- W3005733487 creator A5045170088 @default.
- W3005733487 creator A5060240199 @default.
- W3005733487 creator A5062004910 @default.
- W3005733487 date "2019-11-01" @default.
- W3005733487 modified "2023-09-24" @default.
- W3005733487 title "Soft Measurement Method Based on Conditional Mutual Information and Autoregressive Neural Network" @default.
- W3005733487 doi "https://doi.org/10.1109/cac48633.2019.8997360" @default.
- W3005733487 hasPublicationYear "2019" @default.
- W3005733487 type Work @default.
- W3005733487 sameAs 3005733487 @default.
- W3005733487 citedByCount "0" @default.
- W3005733487 crossrefType "proceedings-article" @default.
- W3005733487 hasAuthorship W3005733487A5009194265 @default.
- W3005733487 hasAuthorship W3005733487A5042973046 @default.
- W3005733487 hasAuthorship W3005733487A5045170088 @default.
- W3005733487 hasAuthorship W3005733487A5060240199 @default.
- W3005733487 hasAuthorship W3005733487A5062004910 @default.
- W3005733487 hasConcept C105795698 @default.
- W3005733487 hasConcept C106131492 @default.
- W3005733487 hasConcept C111919701 @default.
- W3005733487 hasConcept C115575686 @default.
- W3005733487 hasConcept C124101348 @default.
- W3005733487 hasConcept C134306372 @default.
- W3005733487 hasConcept C152139883 @default.
- W3005733487 hasConcept C154945302 @default.
- W3005733487 hasConcept C159877910 @default.
- W3005733487 hasConcept C177148314 @default.
- W3005733487 hasConcept C177264268 @default.
- W3005733487 hasConcept C182365436 @default.
- W3005733487 hasConcept C199360897 @default.
- W3005733487 hasConcept C2780009758 @default.
- W3005733487 hasConcept C31972630 @default.
- W3005733487 hasConcept C33923547 @default.
- W3005733487 hasConcept C41008148 @default.
- W3005733487 hasConcept C50644808 @default.
- W3005733487 hasConcept C98045186 @default.
- W3005733487 hasConceptScore W3005733487C105795698 @default.
- W3005733487 hasConceptScore W3005733487C106131492 @default.
- W3005733487 hasConceptScore W3005733487C111919701 @default.
- W3005733487 hasConceptScore W3005733487C115575686 @default.
- W3005733487 hasConceptScore W3005733487C124101348 @default.
- W3005733487 hasConceptScore W3005733487C134306372 @default.
- W3005733487 hasConceptScore W3005733487C152139883 @default.
- W3005733487 hasConceptScore W3005733487C154945302 @default.
- W3005733487 hasConceptScore W3005733487C159877910 @default.
- W3005733487 hasConceptScore W3005733487C177148314 @default.
- W3005733487 hasConceptScore W3005733487C177264268 @default.
- W3005733487 hasConceptScore W3005733487C182365436 @default.
- W3005733487 hasConceptScore W3005733487C199360897 @default.
- W3005733487 hasConceptScore W3005733487C2780009758 @default.
- W3005733487 hasConceptScore W3005733487C31972630 @default.
- W3005733487 hasConceptScore W3005733487C33923547 @default.
- W3005733487 hasConceptScore W3005733487C41008148 @default.
- W3005733487 hasConceptScore W3005733487C50644808 @default.
- W3005733487 hasConceptScore W3005733487C98045186 @default.
- W3005733487 hasLocation W30057334871 @default.
- W3005733487 hasOpenAccess W3005733487 @default.
- W3005733487 hasPrimaryLocation W30057334871 @default.
- W3005733487 hasRelatedWork W2092696228 @default.
- W3005733487 hasRelatedWork W2117750700 @default.
- W3005733487 hasRelatedWork W2327397054 @default.
- W3005733487 hasRelatedWork W2369484522 @default.
- W3005733487 hasRelatedWork W2383761001 @default.
- W3005733487 hasRelatedWork W2466844276 @default.
- W3005733487 hasRelatedWork W2588839380 @default.
- W3005733487 hasRelatedWork W2834022375 @default.
- W3005733487 hasRelatedWork W2896421845 @default.
- W3005733487 hasRelatedWork W2975097568 @default.
- W3005733487 hasRelatedWork W2999550856 @default.
- W3005733487 hasRelatedWork W3062049241 @default.
- W3005733487 hasRelatedWork W3206845671 @default.
- W3005733487 hasRelatedWork W2818879338 @default.
- W3005733487 hasRelatedWork W2831833733 @default.
- W3005733487 hasRelatedWork W2834002415 @default.
- W3005733487 hasRelatedWork W2854852378 @default.
- W3005733487 hasRelatedWork W2875986676 @default.
- W3005733487 hasRelatedWork W2931488970 @default.
- W3005733487 hasRelatedWork W2932197556 @default.
- W3005733487 isParatext "false" @default.
- W3005733487 isRetracted "false" @default.
- W3005733487 magId "3005733487" @default.
- W3005733487 workType "article" @default.