Matches in SemOpenAlex for { <https://semopenalex.org/work/W3005792725> ?p ?o ?g. }
- W3005792725 endingPage "033041" @default.
- W3005792725 startingPage "033041" @default.
- W3005792725 abstract "Abstract Classical deep learning algorithms have aroused great interest in both academia and industry for their utility in image recognition, language translation, decision-making problems and more. In this work, we have provided a quantum deep learning scheme based on multi-qubit entanglement states, including computation and training of neural network in full quantum process. In the course of training, efficient calculation of the distance between unknown unit vector and known unit vector has been realized by proper measurement based on the Greenberger–Horne–Zeilinger entanglement states. An exponential speedup over classical algorithms has been demonstrated. In the process of computation, quantum scheme corresponding to multi-layer feedforward neural network has been provided. We have shown the utility of our scheme using Iris dataset. The extensibility of the present scheme to different types of model has also been analyzed." @default.
- W3005792725 created "2020-02-24" @default.
- W3005792725 creator A5039646510 @default.
- W3005792725 creator A5084145889 @default.
- W3005792725 date "2020-03-01" @default.
- W3005792725 modified "2023-10-11" @default.
- W3005792725 title "Entanglement-based quantum deep learning" @default.
- W3005792725 cites W1485920032 @default.
- W3005792725 cites W1498436455 @default.
- W3005792725 cites W1529944915 @default.
- W3005792725 cites W1866520820 @default.
- W3005792725 cites W1901616594 @default.
- W3005792725 cites W1980080007 @default.
- W3005792725 cites W1990514347 @default.
- W3005792725 cites W1994554764 @default.
- W3005792725 cites W2000465731 @default.
- W3005792725 cites W2002810990 @default.
- W3005792725 cites W2014735262 @default.
- W3005792725 cites W2023270212 @default.
- W3005792725 cites W2041343357 @default.
- W3005792725 cites W2042723520 @default.
- W3005792725 cites W2044386713 @default.
- W3005792725 cites W2051446825 @default.
- W3005792725 cites W2069563009 @default.
- W3005792725 cites W2071576863 @default.
- W3005792725 cites W2072498431 @default.
- W3005792725 cites W2075821682 @default.
- W3005792725 cites W2076476236 @default.
- W3005792725 cites W2079995539 @default.
- W3005792725 cites W2085142809 @default.
- W3005792725 cites W2097100165 @default.
- W3005792725 cites W2097174474 @default.
- W3005792725 cites W2098900497 @default.
- W3005792725 cites W2100495367 @default.
- W3005792725 cites W2103956991 @default.
- W3005792725 cites W2110485445 @default.
- W3005792725 cites W2111953360 @default.
- W3005792725 cites W2116235513 @default.
- W3005792725 cites W2136922672 @default.
- W3005792725 cites W2137983211 @default.
- W3005792725 cites W2144354855 @default.
- W3005792725 cites W2145339207 @default.
- W3005792725 cites W2148763549 @default.
- W3005792725 cites W2155454737 @default.
- W3005792725 cites W2159226773 @default.
- W3005792725 cites W2163525631 @default.
- W3005792725 cites W2169805405 @default.
- W3005792725 cites W2415710521 @default.
- W3005792725 cites W2521267242 @default.
- W3005792725 cites W2541528677 @default.
- W3005792725 cites W2557392572 @default.
- W3005792725 cites W2559394418 @default.
- W3005792725 cites W2560386163 @default.
- W3005792725 cites W2579928628 @default.
- W3005792725 cites W2607911764 @default.
- W3005792725 cites W2725502959 @default.
- W3005792725 cites W2752862743 @default.
- W3005792725 cites W2786167326 @default.
- W3005792725 cites W2885833035 @default.
- W3005792725 cites W2896712926 @default.
- W3005792725 cites W2919115771 @default.
- W3005792725 cites W2944417983 @default.
- W3005792725 cites W2963173679 @default.
- W3005792725 cites W3098768946 @default.
- W3005792725 cites W3105870134 @default.
- W3005792725 cites W3122406616 @default.
- W3005792725 doi "https://doi.org/10.1088/1367-2630/ab7598" @default.
- W3005792725 hasPublicationYear "2020" @default.
- W3005792725 type Work @default.
- W3005792725 sameAs 3005792725 @default.
- W3005792725 citedByCount "12" @default.
- W3005792725 countsByYear W30057927252021 @default.
- W3005792725 countsByYear W30057927252022 @default.
- W3005792725 countsByYear W30057927252023 @default.
- W3005792725 crossrefType "journal-article" @default.
- W3005792725 hasAuthorship W3005792725A5039646510 @default.
- W3005792725 hasAuthorship W3005792725A5084145889 @default.
- W3005792725 hasBestOaLocation W30057927251 @default.
- W3005792725 hasConcept C108583219 @default.
- W3005792725 hasConcept C111919701 @default.
- W3005792725 hasConcept C11413529 @default.
- W3005792725 hasConcept C114614502 @default.
- W3005792725 hasConcept C121040770 @default.
- W3005792725 hasConcept C121332964 @default.
- W3005792725 hasConcept C127413603 @default.
- W3005792725 hasConcept C133731056 @default.
- W3005792725 hasConcept C134306372 @default.
- W3005792725 hasConcept C154945302 @default.
- W3005792725 hasConcept C184720557 @default.
- W3005792725 hasConcept C33923547 @default.
- W3005792725 hasConcept C38858127 @default.
- W3005792725 hasConcept C41008148 @default.
- W3005792725 hasConcept C45374587 @default.
- W3005792725 hasConcept C50644808 @default.
- W3005792725 hasConcept C58053490 @default.
- W3005792725 hasConcept C62520636 @default.
- W3005792725 hasConcept C68339613 @default.
- W3005792725 hasConcept C77618280 @default.