Matches in SemOpenAlex for { <https://semopenalex.org/work/W3005965384> ?p ?o ?g. }
- W3005965384 abstract "This paper explores the application of machine learning methods to financial statement analysis. We compare a range of models in the machine learning repertoire in their ability to predict the sign and magnitude of abnormal stock returns around earnings announcements based on past financial statement data alone. Random Forests produce the most accurate forecasts and the highest abnormal returns. (Nonlinear) neural network-based models perform relatively better for predictions of extreme market reactions, while the linear methods are relatively better in predicting moderate market reactions. Long-short portfolios based on model predictions generate sizable abnormal returns, which seem to decay over time. Abnormal returns are robust to various risk factors and load in expected ways on size, value and accruals. Analysing the underlying economic drivers of the performance of the Random Forests, we find that the models select as most important predictors financial variables required to forecast free cash flows and firm characteristics that are known cross-sectional predictors of stock returns." @default.
- W3005965384 created "2020-02-24" @default.
- W3005965384 creator A5039607149 @default.
- W3005965384 creator A5058617210 @default.
- W3005965384 creator A5070954391 @default.
- W3005965384 creator A5074058728 @default.
- W3005965384 date "2020-01-01" @default.
- W3005965384 modified "2023-10-03" @default.
- W3005965384 title "Machine Learning-Based Financial Statement Analysis" @default.
- W3005965384 cites W1498436455 @default.
- W3005965384 cites W1590196906 @default.
- W3005965384 cites W1968433094 @default.
- W3005965384 cites W1993585367 @default.
- W3005965384 cites W2005346797 @default.
- W3005965384 cites W2015137306 @default.
- W3005965384 cites W2016023958 @default.
- W3005965384 cites W2022182462 @default.
- W3005965384 cites W2023959308 @default.
- W3005965384 cites W2038224101 @default.
- W3005965384 cites W2039594318 @default.
- W3005965384 cites W2040870580 @default.
- W3005965384 cites W2043464706 @default.
- W3005965384 cites W2044471774 @default.
- W3005965384 cites W2050748604 @default.
- W3005965384 cites W2064675550 @default.
- W3005965384 cites W2065706705 @default.
- W3005965384 cites W2066456070 @default.
- W3005965384 cites W2081432842 @default.
- W3005965384 cites W2081864176 @default.
- W3005965384 cites W2084166521 @default.
- W3005965384 cites W2084956342 @default.
- W3005965384 cites W2116347131 @default.
- W3005965384 cites W2123359514 @default.
- W3005965384 cites W2124856101 @default.
- W3005965384 cites W2125520394 @default.
- W3005965384 cites W2125736403 @default.
- W3005965384 cites W2128490915 @default.
- W3005965384 cites W2133947838 @default.
- W3005965384 cites W2135046866 @default.
- W3005965384 cites W2146842127 @default.
- W3005965384 cites W2148965563 @default.
- W3005965384 cites W2149115758 @default.
- W3005965384 cites W2154398438 @default.
- W3005965384 cites W2156457893 @default.
- W3005965384 cites W2166215547 @default.
- W3005965384 cites W2182051792 @default.
- W3005965384 cites W2261191690 @default.
- W3005965384 cites W2329320632 @default.
- W3005965384 cites W2579199835 @default.
- W3005965384 cites W2606916050 @default.
- W3005965384 cites W2697337584 @default.
- W3005965384 cites W2889880961 @default.
- W3005965384 cites W2895704686 @default.
- W3005965384 cites W2903220052 @default.
- W3005965384 cites W2910401125 @default.
- W3005965384 cites W2911964244 @default.
- W3005965384 cites W2917490808 @default.
- W3005965384 cites W3021190191 @default.
- W3005965384 cites W3121259292 @default.
- W3005965384 cites W3121288394 @default.
- W3005965384 cites W3121359457 @default.
- W3005965384 cites W3121664121 @default.
- W3005965384 cites W3122485765 @default.
- W3005965384 cites W3123250782 @default.
- W3005965384 cites W3123252495 @default.
- W3005965384 cites W3124580969 @default.
- W3005965384 cites W3124591263 @default.
- W3005965384 cites W3125062974 @default.
- W3005965384 cites W3125433491 @default.
- W3005965384 cites W3125438718 @default.
- W3005965384 cites W3125614333 @default.
- W3005965384 cites W3125756421 @default.
- W3005965384 cites W3125788531 @default.
- W3005965384 cites W3150547458 @default.
- W3005965384 cites W4211170237 @default.
- W3005965384 cites W4231546411 @default.
- W3005965384 cites W4237239309 @default.
- W3005965384 cites W4241589022 @default.
- W3005965384 cites W4246390368 @default.
- W3005965384 doi "https://doi.org/10.2139/ssrn.3520684" @default.
- W3005965384 hasPublicationYear "2020" @default.
- W3005965384 type Work @default.
- W3005965384 sameAs 3005965384 @default.
- W3005965384 citedByCount "7" @default.
- W3005965384 countsByYear W30059653842021 @default.
- W3005965384 countsByYear W30059653842022 @default.
- W3005965384 countsByYear W30059653842023 @default.
- W3005965384 crossrefType "journal-article" @default.
- W3005965384 hasAuthorship W3005965384A5039607149 @default.
- W3005965384 hasAuthorship W3005965384A5058617210 @default.
- W3005965384 hasAuthorship W3005965384A5070954391 @default.
- W3005965384 hasAuthorship W3005965384A5074058728 @default.
- W3005965384 hasConcept C121955636 @default.
- W3005965384 hasConcept C130731218 @default.
- W3005965384 hasConcept C140060971 @default.
- W3005965384 hasConcept C144133560 @default.
- W3005965384 hasConcept C17744445 @default.
- W3005965384 hasConcept C199521495 @default.
- W3005965384 hasConcept C199539241 @default.
- W3005965384 hasConcept C2777026412 @default.