Matches in SemOpenAlex for { <https://semopenalex.org/work/W3005985924> ?p ?o ?g. }
- W3005985924 endingPage "5311" @default.
- W3005985924 startingPage "5300" @default.
- W3005985924 abstract "This article proposes an unsupervised address event representation (AER) object recognition approach. The proposed approach consists of a novel multiscale spatio-temporal feature (MuST) representation of input AER events and a spiking neural network (SNN) using spike-timing-dependent plasticity (STDP) for object recognition with MuST. MuST extracts the features contained in both the spatial and temporal information of AER event flow, and forms an informative and compact feature spike representation. We show not only how MuST exploits spikes to convey information more effectively, but also how it benefits the recognition using SNN. The recognition process is performed in an unsupervised manner, which does not need to specify the desired status of every single neuron of SNN, and thus can be flexibly applied in real-world recognition tasks. The experiments are performed on five AER datasets including a new one named GESTURE-DVS. Extensive experimental results show the effectiveness and advantages of the proposed approach." @default.
- W3005985924 created "2020-02-24" @default.
- W3005985924 creator A5057282687 @default.
- W3005985924 creator A5059986647 @default.
- W3005985924 creator A5065911896 @default.
- W3005985924 creator A5066961475 @default.
- W3005985924 creator A5079563363 @default.
- W3005985924 creator A5084291326 @default.
- W3005985924 date "2020-12-01" @default.
- W3005985924 modified "2023-09-29" @default.
- W3005985924 title "Unsupervised AER Object Recognition Based on Multiscale Spatio-Temporal Features and Spiking Neurons" @default.
- W3005985924 cites W1570411240 @default.
- W3005985924 cites W1695065985 @default.
- W3005985924 cites W1963689209 @default.
- W3005985924 cites W1975003449 @default.
- W3005985924 cites W1975412204 @default.
- W3005985924 cites W1978306818 @default.
- W3005985924 cites W1980178290 @default.
- W3005985924 cites W2002302295 @default.
- W3005985924 cites W2016574277 @default.
- W3005985924 cites W2020096355 @default.
- W3005985924 cites W206948248 @default.
- W3005985924 cites W2073813638 @default.
- W3005985924 cites W2079995124 @default.
- W3005985924 cites W2089442458 @default.
- W3005985924 cites W2104549563 @default.
- W3005985924 cites W2108148142 @default.
- W3005985924 cites W2116360511 @default.
- W3005985924 cites W2132172482 @default.
- W3005985924 cites W2136040261 @default.
- W3005985924 cites W2144982973 @default.
- W3005985924 cites W2147101007 @default.
- W3005985924 cites W2164258820 @default.
- W3005985924 cites W2165396124 @default.
- W3005985924 cites W2171236529 @default.
- W3005985924 cites W2171851311 @default.
- W3005985924 cites W2260550436 @default.
- W3005985924 cites W2316169433 @default.
- W3005985924 cites W2335559422 @default.
- W3005985924 cites W2469278928 @default.
- W3005985924 cites W2555748718 @default.
- W3005985924 cites W2604594744 @default.
- W3005985924 cites W2736299736 @default.
- W3005985924 cites W2766949630 @default.
- W3005985924 cites W2794803964 @default.
- W3005985924 cites W2808395107 @default.
- W3005985924 cites W2962804204 @default.
- W3005985924 doi "https://doi.org/10.1109/tnnls.2020.2966058" @default.
- W3005985924 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32054587" @default.
- W3005985924 hasPublicationYear "2020" @default.
- W3005985924 type Work @default.
- W3005985924 sameAs 3005985924 @default.
- W3005985924 citedByCount "17" @default.
- W3005985924 countsByYear W30059859242020 @default.
- W3005985924 countsByYear W30059859242021 @default.
- W3005985924 countsByYear W30059859242022 @default.
- W3005985924 countsByYear W30059859242023 @default.
- W3005985924 crossrefType "journal-article" @default.
- W3005985924 hasAuthorship W3005985924A5057282687 @default.
- W3005985924 hasAuthorship W3005985924A5059986647 @default.
- W3005985924 hasAuthorship W3005985924A5065911896 @default.
- W3005985924 hasAuthorship W3005985924A5066961475 @default.
- W3005985924 hasAuthorship W3005985924A5079563363 @default.
- W3005985924 hasAuthorship W3005985924A5084291326 @default.
- W3005985924 hasBestOaLocation W30059859242 @default.
- W3005985924 hasConcept C111919701 @default.
- W3005985924 hasConcept C115903868 @default.
- W3005985924 hasConcept C11731999 @default.
- W3005985924 hasConcept C119857082 @default.
- W3005985924 hasConcept C121332964 @default.
- W3005985924 hasConcept C138885662 @default.
- W3005985924 hasConcept C153180895 @default.
- W3005985924 hasConcept C154945302 @default.
- W3005985924 hasConcept C159919123 @default.
- W3005985924 hasConcept C170493617 @default.
- W3005985924 hasConcept C17744445 @default.
- W3005985924 hasConcept C185592680 @default.
- W3005985924 hasConcept C199539241 @default.
- W3005985924 hasConcept C25274449 @default.
- W3005985924 hasConcept C2776359362 @default.
- W3005985924 hasConcept C2776401178 @default.
- W3005985924 hasConcept C2779662365 @default.
- W3005985924 hasConcept C2781238097 @default.
- W3005985924 hasConcept C2781390188 @default.
- W3005985924 hasConcept C41008148 @default.
- W3005985924 hasConcept C41895202 @default.
- W3005985924 hasConcept C50644808 @default.
- W3005985924 hasConcept C55493867 @default.
- W3005985924 hasConcept C62520636 @default.
- W3005985924 hasConcept C64876066 @default.
- W3005985924 hasConcept C94625758 @default.
- W3005985924 hasConcept C98045186 @default.
- W3005985924 hasConceptScore W3005985924C111919701 @default.
- W3005985924 hasConceptScore W3005985924C115903868 @default.
- W3005985924 hasConceptScore W3005985924C11731999 @default.
- W3005985924 hasConceptScore W3005985924C119857082 @default.
- W3005985924 hasConceptScore W3005985924C121332964 @default.
- W3005985924 hasConceptScore W3005985924C138885662 @default.