Matches in SemOpenAlex for { <https://semopenalex.org/work/W3005986561> ?p ?o ?g. }
- W3005986561 endingPage "323" @default.
- W3005986561 startingPage "323" @default.
- W3005986561 abstract "In recent years, machine learning techniques have been proven to be a promising tool for early fault detection of rolling bearings. In many actual applications, however, bearing whole-life data are not easy to be historically accumulated, while insufficient data may result in training a detection model that is not good enough. If utilizing the available data under different working conditions to facilitate model training, the data distribution of different bearings are usually quite different, which does not meet the precondition of i n d e p e n d e n t a n d i d e n t i c a l d i s t r i b u t i o n ( i . i . d ) and tends to cause performance reduction. In addition, disturbed by the unstable noise under complex conditions, most of the current detection methods are inclined to raise false alarms, so that the reliability of detection results needs to be improved. To solve these problems, a robust detection method for bearings early fault is proposed based on deep transfer learning. The method includes offline stage and online stage. In the offline stage, by introducing a deep auto-encoder network with domain adaptation, the distribution inconsistency of normal state data among different bearings can be weakened, then the common feature representation of the normal state is obtained. With the extracted common features, a new state assessment method based on the robust deep auto-encoder network is proposed to evaluate the boundary between normal state and early fault state in the low-rank feature space. By training a support vector machine classifier, the detection model is established. In the online stage, along with the data batch arriving sequentially, the features of target bearing are extracted using the common representation learnt in the offline stage, and online detection is conducted by feeding them into the SVM model. Experimental results on IEEE PHM Challenge 2012 bearing dataset and XJTU-SY dataset show that the proposed approach outperforms several state-of-the-art detection methods in terms of detection accuracy and false alarm rate." @default.
- W3005986561 created "2020-02-24" @default.
- W3005986561 creator A5030611214 @default.
- W3005986561 creator A5033586311 @default.
- W3005986561 creator A5089254601 @default.
- W3005986561 creator A5090639687 @default.
- W3005986561 date "2020-02-13" @default.
- W3005986561 modified "2023-09-23" @default.
- W3005986561 title "Robust Detection of Bearing Early Fault Based on Deep Transfer Learning" @default.
- W3005986561 cites W1970088130 @default.
- W3005986561 cites W2007221293 @default.
- W3005986561 cites W2012295579 @default.
- W3005986561 cites W2027176154 @default.
- W3005986561 cites W2030276507 @default.
- W3005986561 cites W2115403315 @default.
- W3005986561 cites W2153635508 @default.
- W3005986561 cites W2164943005 @default.
- W3005986561 cites W2219903032 @default.
- W3005986561 cites W2258884143 @default.
- W3005986561 cites W2330534857 @default.
- W3005986561 cites W2464878551 @default.
- W3005986561 cites W2548257861 @default.
- W3005986561 cites W2556013418 @default.
- W3005986561 cites W2568819930 @default.
- W3005986561 cites W2731372149 @default.
- W3005986561 cites W2736225434 @default.
- W3005986561 cites W2738563279 @default.
- W3005986561 cites W2740570963 @default.
- W3005986561 cites W2763583057 @default.
- W3005986561 cites W2791139105 @default.
- W3005986561 cites W2798149494 @default.
- W3005986561 cites W2887767982 @default.
- W3005986561 cites W2904172802 @default.
- W3005986561 cites W2904460913 @default.
- W3005986561 cites W2907541186 @default.
- W3005986561 cites W2908062660 @default.
- W3005986561 cites W2929444508 @default.
- W3005986561 cites W2945413072 @default.
- W3005986561 cites W923818475 @default.
- W3005986561 doi "https://doi.org/10.3390/electronics9020323" @default.
- W3005986561 hasPublicationYear "2020" @default.
- W3005986561 type Work @default.
- W3005986561 sameAs 3005986561 @default.
- W3005986561 citedByCount "14" @default.
- W3005986561 countsByYear W30059865612020 @default.
- W3005986561 countsByYear W30059865612021 @default.
- W3005986561 countsByYear W30059865612022 @default.
- W3005986561 countsByYear W30059865612023 @default.
- W3005986561 crossrefType "journal-article" @default.
- W3005986561 hasAuthorship W3005986561A5030611214 @default.
- W3005986561 hasAuthorship W3005986561A5033586311 @default.
- W3005986561 hasAuthorship W3005986561A5089254601 @default.
- W3005986561 hasAuthorship W3005986561A5090639687 @default.
- W3005986561 hasBestOaLocation W30059865611 @default.
- W3005986561 hasConcept C108583219 @default.
- W3005986561 hasConcept C115961682 @default.
- W3005986561 hasConcept C121332964 @default.
- W3005986561 hasConcept C127313418 @default.
- W3005986561 hasConcept C138885662 @default.
- W3005986561 hasConcept C150899416 @default.
- W3005986561 hasConcept C152745839 @default.
- W3005986561 hasConcept C153180895 @default.
- W3005986561 hasConcept C154945302 @default.
- W3005986561 hasConcept C163258240 @default.
- W3005986561 hasConcept C163294075 @default.
- W3005986561 hasConcept C165205528 @default.
- W3005986561 hasConcept C172707124 @default.
- W3005986561 hasConcept C175551986 @default.
- W3005986561 hasConcept C17744445 @default.
- W3005986561 hasConcept C199539241 @default.
- W3005986561 hasConcept C199978012 @default.
- W3005986561 hasConcept C2776359362 @default.
- W3005986561 hasConcept C2776401178 @default.
- W3005986561 hasConcept C41008148 @default.
- W3005986561 hasConcept C41895202 @default.
- W3005986561 hasConcept C43214815 @default.
- W3005986561 hasConcept C62520636 @default.
- W3005986561 hasConcept C94625758 @default.
- W3005986561 hasConcept C99498987 @default.
- W3005986561 hasConceptScore W3005986561C108583219 @default.
- W3005986561 hasConceptScore W3005986561C115961682 @default.
- W3005986561 hasConceptScore W3005986561C121332964 @default.
- W3005986561 hasConceptScore W3005986561C127313418 @default.
- W3005986561 hasConceptScore W3005986561C138885662 @default.
- W3005986561 hasConceptScore W3005986561C150899416 @default.
- W3005986561 hasConceptScore W3005986561C152745839 @default.
- W3005986561 hasConceptScore W3005986561C153180895 @default.
- W3005986561 hasConceptScore W3005986561C154945302 @default.
- W3005986561 hasConceptScore W3005986561C163258240 @default.
- W3005986561 hasConceptScore W3005986561C163294075 @default.
- W3005986561 hasConceptScore W3005986561C165205528 @default.
- W3005986561 hasConceptScore W3005986561C172707124 @default.
- W3005986561 hasConceptScore W3005986561C175551986 @default.
- W3005986561 hasConceptScore W3005986561C17744445 @default.
- W3005986561 hasConceptScore W3005986561C199539241 @default.
- W3005986561 hasConceptScore W3005986561C199978012 @default.
- W3005986561 hasConceptScore W3005986561C2776359362 @default.
- W3005986561 hasConceptScore W3005986561C2776401178 @default.