Matches in SemOpenAlex for { <https://semopenalex.org/work/W3005989820> ?p ?o ?g. }
- W3005989820 endingPage "30" @default.
- W3005989820 startingPage "20" @default.
- W3005989820 abstract "The cloud service providers require a large number of computing resources to provide services on-demand that consume the electricity at large and leave high carbon footprints which must be minimized. A cloud system must optimally use its resources to achieve a low operational cost without degrading the quality of services. In this context, an ensemble learning based workload forecasting method is presented that uses extreme learning machines and their corresponding forecasts are weighted by a voting engine. A metaheuristic algorithm inspired by blackhole theory is used to select the optimal weights. The accuracy of the approach is tested on CPU and memory demand requests of Google cluster trace. The method is also compared with recent existing work in the literature on CPU utilization of Google cluster and PlanetLab traces. The results validate the superiority of the approach over existing methods with an improvement up to 99.20% in root mean squared error." @default.
- W3005989820 created "2020-02-24" @default.
- W3005989820 creator A5000172227 @default.
- W3005989820 creator A5013082893 @default.
- W3005989820 creator A5038146323 @default.
- W3005989820 date "2020-07-01" @default.
- W3005989820 modified "2023-10-12" @default.
- W3005989820 title "Ensemble learning based predictive framework for virtual machine resource request prediction" @default.
- W3005989820 cites W1502077345 @default.
- W3005989820 cites W2002239455 @default.
- W3005989820 cites W2036325170 @default.
- W3005989820 cites W2037487174 @default.
- W3005989820 cites W2045891970 @default.
- W3005989820 cites W2048402506 @default.
- W3005989820 cites W2049410552 @default.
- W3005989820 cites W2056811412 @default.
- W3005989820 cites W2111072639 @default.
- W3005989820 cites W2131783215 @default.
- W3005989820 cites W2139399748 @default.
- W3005989820 cites W2144628693 @default.
- W3005989820 cites W2153695774 @default.
- W3005989820 cites W2190244837 @default.
- W3005989820 cites W2263512615 @default.
- W3005989820 cites W2287756997 @default.
- W3005989820 cites W2343187072 @default.
- W3005989820 cites W2473271044 @default.
- W3005989820 cites W2578279218 @default.
- W3005989820 cites W2737359858 @default.
- W3005989820 cites W2772043392 @default.
- W3005989820 cites W2775287056 @default.
- W3005989820 cites W2781697399 @default.
- W3005989820 cites W2782968911 @default.
- W3005989820 cites W2783992985 @default.
- W3005989820 cites W2791512297 @default.
- W3005989820 cites W2795993366 @default.
- W3005989820 cites W2797367408 @default.
- W3005989820 cites W2799775760 @default.
- W3005989820 cites W2801175776 @default.
- W3005989820 cites W2921318726 @default.
- W3005989820 cites W2956058642 @default.
- W3005989820 cites W2981793432 @default.
- W3005989820 cites W4252545829 @default.
- W3005989820 doi "https://doi.org/10.1016/j.neucom.2020.02.014" @default.
- W3005989820 hasPublicationYear "2020" @default.
- W3005989820 type Work @default.
- W3005989820 sameAs 3005989820 @default.
- W3005989820 citedByCount "27" @default.
- W3005989820 countsByYear W30059898202020 @default.
- W3005989820 countsByYear W30059898202021 @default.
- W3005989820 countsByYear W30059898202022 @default.
- W3005989820 countsByYear W30059898202023 @default.
- W3005989820 crossrefType "journal-article" @default.
- W3005989820 hasAuthorship W3005989820A5000172227 @default.
- W3005989820 hasAuthorship W3005989820A5013082893 @default.
- W3005989820 hasAuthorship W3005989820A5038146323 @default.
- W3005989820 hasConcept C109718341 @default.
- W3005989820 hasConcept C110875604 @default.
- W3005989820 hasConcept C111919701 @default.
- W3005989820 hasConcept C119857082 @default.
- W3005989820 hasConcept C124101348 @default.
- W3005989820 hasConcept C151730666 @default.
- W3005989820 hasConcept C154945302 @default.
- W3005989820 hasConcept C2778476105 @default.
- W3005989820 hasConcept C2779343474 @default.
- W3005989820 hasConcept C2780300890 @default.
- W3005989820 hasConcept C31258907 @default.
- W3005989820 hasConcept C41008148 @default.
- W3005989820 hasConcept C45942800 @default.
- W3005989820 hasConcept C5119721 @default.
- W3005989820 hasConcept C79974875 @default.
- W3005989820 hasConcept C86803240 @default.
- W3005989820 hasConceptScore W3005989820C109718341 @default.
- W3005989820 hasConceptScore W3005989820C110875604 @default.
- W3005989820 hasConceptScore W3005989820C111919701 @default.
- W3005989820 hasConceptScore W3005989820C119857082 @default.
- W3005989820 hasConceptScore W3005989820C124101348 @default.
- W3005989820 hasConceptScore W3005989820C151730666 @default.
- W3005989820 hasConceptScore W3005989820C154945302 @default.
- W3005989820 hasConceptScore W3005989820C2778476105 @default.
- W3005989820 hasConceptScore W3005989820C2779343474 @default.
- W3005989820 hasConceptScore W3005989820C2780300890 @default.
- W3005989820 hasConceptScore W3005989820C31258907 @default.
- W3005989820 hasConceptScore W3005989820C41008148 @default.
- W3005989820 hasConceptScore W3005989820C45942800 @default.
- W3005989820 hasConceptScore W3005989820C5119721 @default.
- W3005989820 hasConceptScore W3005989820C79974875 @default.
- W3005989820 hasConceptScore W3005989820C86803240 @default.
- W3005989820 hasLocation W30059898201 @default.
- W3005989820 hasOpenAccess W3005989820 @default.
- W3005989820 hasPrimaryLocation W30059898201 @default.
- W3005989820 hasRelatedWork W2004072179 @default.
- W3005989820 hasRelatedWork W4281757034 @default.
- W3005989820 hasRelatedWork W4285046548 @default.
- W3005989820 hasRelatedWork W4285741730 @default.
- W3005989820 hasRelatedWork W4292969247 @default.
- W3005989820 hasRelatedWork W4296160164 @default.
- W3005989820 hasRelatedWork W4312241010 @default.
- W3005989820 hasRelatedWork W4313488044 @default.