Matches in SemOpenAlex for { <https://semopenalex.org/work/W3006048679> ?p ?o ?g. }
- W3006048679 endingPage "1433" @default.
- W3006048679 startingPage "1433" @default.
- W3006048679 abstract "Based on the collected weather data from the agricultural Internet of Things (IoT) system, changes in the weather can be obtained in advance, which is an effective way to plan and control sustainable agricultural production. However, it is not easy to accurately predict the future trend because the data always contain complex nonlinear relationship with multiple components. To increase the prediction performance of the weather data in the precision agriculture IoT system, this study used a deep learning predictor with sequential two-level decomposition structure, in which the weather data were decomposed into four components serially, then the gated recurrent unit (GRU) networks were trained as the sub-predictors for each component. Finally, the results from GRUs were combined to obtain the medium- and long-term prediction result. The experiments were verified for the proposed model based on weather data from the IoT system in Ningxia, China, for wolfberry planting, in which the prediction results showed that the proposed predictor can obtain the accurate prediction of temperature and humidity and meet the needs of precision agricultural production." @default.
- W3006048679 created "2020-02-24" @default.
- W3006048679 creator A5000194974 @default.
- W3006048679 creator A5002194743 @default.
- W3006048679 creator A5013315448 @default.
- W3006048679 creator A5031227420 @default.
- W3006048679 creator A5043441209 @default.
- W3006048679 creator A5067734324 @default.
- W3006048679 date "2020-02-14" @default.
- W3006048679 modified "2023-10-16" @default.
- W3006048679 title "Deep Learning Predictor for Sustainable Precision Agriculture Based on Internet of Things System" @default.
- W3006048679 cites W2000061362 @default.
- W3006048679 cites W2040750108 @default.
- W3006048679 cites W2163836450 @default.
- W3006048679 cites W2288859715 @default.
- W3006048679 cites W2301095666 @default.
- W3006048679 cites W2338792518 @default.
- W3006048679 cites W2503355617 @default.
- W3006048679 cites W2766311542 @default.
- W3006048679 cites W2791329655 @default.
- W3006048679 cites W2801889078 @default.
- W3006048679 cites W2801922753 @default.
- W3006048679 cites W2893164490 @default.
- W3006048679 cites W2894448136 @default.
- W3006048679 cites W2896604477 @default.
- W3006048679 cites W2904462474 @default.
- W3006048679 cites W2905369679 @default.
- W3006048679 cites W2906727181 @default.
- W3006048679 cites W2913334908 @default.
- W3006048679 cites W2915594101 @default.
- W3006048679 cites W2917898094 @default.
- W3006048679 cites W2944523343 @default.
- W3006048679 cites W2947459851 @default.
- W3006048679 cites W2954647545 @default.
- W3006048679 cites W2964010366 @default.
- W3006048679 cites W2964248614 @default.
- W3006048679 cites W2971192368 @default.
- W3006048679 cites W2971463117 @default.
- W3006048679 cites W2974780582 @default.
- W3006048679 cites W2981704113 @default.
- W3006048679 cites W2981800200 @default.
- W3006048679 cites W2984852226 @default.
- W3006048679 cites W2987623830 @default.
- W3006048679 cites W2997444524 @default.
- W3006048679 cites W2997964978 @default.
- W3006048679 cites W2998096733 @default.
- W3006048679 cites W3003261442 @default.
- W3006048679 cites W3004033697 @default.
- W3006048679 cites W3005177200 @default.
- W3006048679 doi "https://doi.org/10.3390/su12041433" @default.
- W3006048679 hasPublicationYear "2020" @default.
- W3006048679 type Work @default.
- W3006048679 sameAs 3006048679 @default.
- W3006048679 citedByCount "59" @default.
- W3006048679 countsByYear W30060486792020 @default.
- W3006048679 countsByYear W30060486792021 @default.
- W3006048679 countsByYear W30060486792022 @default.
- W3006048679 countsByYear W30060486792023 @default.
- W3006048679 crossrefType "journal-article" @default.
- W3006048679 hasAuthorship W3006048679A5000194974 @default.
- W3006048679 hasAuthorship W3006048679A5002194743 @default.
- W3006048679 hasAuthorship W3006048679A5013315448 @default.
- W3006048679 hasAuthorship W3006048679A5031227420 @default.
- W3006048679 hasAuthorship W3006048679A5043441209 @default.
- W3006048679 hasAuthorship W3006048679A5067734324 @default.
- W3006048679 hasBestOaLocation W30060486791 @default.
- W3006048679 hasConcept C108583219 @default.
- W3006048679 hasConcept C110875604 @default.
- W3006048679 hasConcept C118518473 @default.
- W3006048679 hasConcept C119857082 @default.
- W3006048679 hasConcept C124101348 @default.
- W3006048679 hasConcept C128383755 @default.
- W3006048679 hasConcept C136764020 @default.
- W3006048679 hasConcept C139719470 @default.
- W3006048679 hasConcept C149635348 @default.
- W3006048679 hasConcept C154945302 @default.
- W3006048679 hasConcept C162324750 @default.
- W3006048679 hasConcept C166957645 @default.
- W3006048679 hasConcept C205649164 @default.
- W3006048679 hasConcept C2778348673 @default.
- W3006048679 hasConcept C41008148 @default.
- W3006048679 hasConcept C45804977 @default.
- W3006048679 hasConcept C79403827 @default.
- W3006048679 hasConcept C81860439 @default.
- W3006048679 hasConceptScore W3006048679C108583219 @default.
- W3006048679 hasConceptScore W3006048679C110875604 @default.
- W3006048679 hasConceptScore W3006048679C118518473 @default.
- W3006048679 hasConceptScore W3006048679C119857082 @default.
- W3006048679 hasConceptScore W3006048679C124101348 @default.
- W3006048679 hasConceptScore W3006048679C128383755 @default.
- W3006048679 hasConceptScore W3006048679C136764020 @default.
- W3006048679 hasConceptScore W3006048679C139719470 @default.
- W3006048679 hasConceptScore W3006048679C149635348 @default.
- W3006048679 hasConceptScore W3006048679C154945302 @default.
- W3006048679 hasConceptScore W3006048679C162324750 @default.
- W3006048679 hasConceptScore W3006048679C166957645 @default.
- W3006048679 hasConceptScore W3006048679C205649164 @default.
- W3006048679 hasConceptScore W3006048679C2778348673 @default.