Matches in SemOpenAlex for { <https://semopenalex.org/work/W3006152022> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W3006152022 endingPage "1257" @default.
- W3006152022 startingPage "1245" @default.
- W3006152022 abstract "In semiconductor manufacturing, wafer testing is performed to ensure the performance of each product after wafer fabrication. The wafer map is used to visualize the color-coded wafer test results based on the locations. The defects on the wafer map may be randomly distributed or form clustered patterns. The various clustered defect patterns are usually caused by assignable faults. The identification of the patterns is thus important to provide valuable hints for the root causes diagnosis. Solving the problems helps improve the manufacturing processes and reduce costs. In this study, we present a novel convolutional neural network (CNN)–based method to automatically recognize the defect pattern on wafer maps. Our method uses polar mapping before the training of CNN to transform the circular wafer map into a matrix, which can be processed within CNN architecture. This procedure also reduces the input size and solves variations in wafer sizes and die sizes. To eliminate the effects of rotation, we apply data augmentation in the training of CNN. Experiments using the real-world dataset prove the effectiveness and superiority of our method." @default.
- W3006152022 created "2020-02-24" @default.
- W3006152022 creator A5009851374 @default.
- W3006152022 creator A5015331325 @default.
- W3006152022 date "2020-06-01" @default.
- W3006152022 modified "2023-09-30" @default.
- W3006152022 title "Defect pattern recognition on wafers using convolutional neural networks" @default.
- W3006152022 cites W1612399388 @default.
- W3006152022 cites W1849277567 @default.
- W3006152022 cites W1979091955 @default.
- W3006152022 cites W1985135956 @default.
- W3006152022 cites W2020286945 @default.
- W3006152022 cites W2025298711 @default.
- W3006152022 cites W2048106119 @default.
- W3006152022 cites W2056945148 @default.
- W3006152022 cites W2078897728 @default.
- W3006152022 cites W2103803924 @default.
- W3006152022 cites W2186511346 @default.
- W3006152022 cites W2286515324 @default.
- W3006152022 cites W2592600582 @default.
- W3006152022 cites W2742339636 @default.
- W3006152022 cites W2790607928 @default.
- W3006152022 cites W2792944472 @default.
- W3006152022 cites W2805484002 @default.
- W3006152022 cites W2898077816 @default.
- W3006152022 cites W2920311927 @default.
- W3006152022 cites W2922187519 @default.
- W3006152022 cites W29277504 @default.
- W3006152022 cites W2945987769 @default.
- W3006152022 doi "https://doi.org/10.1002/qre.2627" @default.
- W3006152022 hasPublicationYear "2020" @default.
- W3006152022 type Work @default.
- W3006152022 sameAs 3006152022 @default.
- W3006152022 citedByCount "30" @default.
- W3006152022 countsByYear W30061520222020 @default.
- W3006152022 countsByYear W30061520222021 @default.
- W3006152022 countsByYear W30061520222022 @default.
- W3006152022 countsByYear W30061520222023 @default.
- W3006152022 crossrefType "journal-article" @default.
- W3006152022 hasAuthorship W3006152022A5009851374 @default.
- W3006152022 hasAuthorship W3006152022A5015331325 @default.
- W3006152022 hasConcept C127413603 @default.
- W3006152022 hasConcept C153180895 @default.
- W3006152022 hasConcept C154945302 @default.
- W3006152022 hasConcept C160671074 @default.
- W3006152022 hasConcept C192562407 @default.
- W3006152022 hasConcept C24326235 @default.
- W3006152022 hasConcept C35750839 @default.
- W3006152022 hasConcept C41008148 @default.
- W3006152022 hasConcept C49040817 @default.
- W3006152022 hasConcept C50644808 @default.
- W3006152022 hasConcept C66018809 @default.
- W3006152022 hasConcept C81363708 @default.
- W3006152022 hasConceptScore W3006152022C127413603 @default.
- W3006152022 hasConceptScore W3006152022C153180895 @default.
- W3006152022 hasConceptScore W3006152022C154945302 @default.
- W3006152022 hasConceptScore W3006152022C160671074 @default.
- W3006152022 hasConceptScore W3006152022C192562407 @default.
- W3006152022 hasConceptScore W3006152022C24326235 @default.
- W3006152022 hasConceptScore W3006152022C35750839 @default.
- W3006152022 hasConceptScore W3006152022C41008148 @default.
- W3006152022 hasConceptScore W3006152022C49040817 @default.
- W3006152022 hasConceptScore W3006152022C50644808 @default.
- W3006152022 hasConceptScore W3006152022C66018809 @default.
- W3006152022 hasConceptScore W3006152022C81363708 @default.
- W3006152022 hasIssue "4" @default.
- W3006152022 hasLocation W30061520221 @default.
- W3006152022 hasOpenAccess W3006152022 @default.
- W3006152022 hasPrimaryLocation W30061520221 @default.
- W3006152022 hasRelatedWork W1576119527 @default.
- W3006152022 hasRelatedWork W2146435486 @default.
- W3006152022 hasRelatedWork W2175746458 @default.
- W3006152022 hasRelatedWork W2237555391 @default.
- W3006152022 hasRelatedWork W2394172622 @default.
- W3006152022 hasRelatedWork W2613736958 @default.
- W3006152022 hasRelatedWork W2732542196 @default.
- W3006152022 hasRelatedWork W2742335923 @default.
- W3006152022 hasRelatedWork W2760085659 @default.
- W3006152022 hasRelatedWork W3093612317 @default.
- W3006152022 hasVolume "36" @default.
- W3006152022 isParatext "false" @default.
- W3006152022 isRetracted "false" @default.
- W3006152022 magId "3006152022" @default.
- W3006152022 workType "article" @default.