Matches in SemOpenAlex for { <https://semopenalex.org/work/W3006156918> ?p ?o ?g. }
- W3006156918 endingPage "46345" @default.
- W3006156918 startingPage "46335" @default.
- W3006156918 abstract "NLP (Natural Language Processing) is a technology that enables computers to understand human languages. Deep-level grammatical and semantic analysis usually uses words as the basic unit, and word segmentation is usually the primary task of NLP. In order to solve the practical problem of huge structural differences between different data modalities in a multi-modal environment and traditional machine learning methods cannot be directly applied, this paper introduces the feature extraction method of deep learning and applies the ideas of deep learning to multi-modal feature extraction. This paper proposes a multi-modal neural network. For each mode, there is a multilayer sub-neural network with an independent structure corresponding to it. It is used to convert the features in different modes to the same-modal features. In terms of word segmentation processing, in view of the problems that existing word segmentation methods can hardly guarantee long-term dependency of text semantics and long training prediction time, a hybrid network English word segmentation processing method is proposed. This method applies BI-GRU (Bidirectional Gated Recurrent Unit) to English word segmentation, and uses the CRF (Conditional Random Field) model to annotate sentences in sequence, effectively solving the long-distance dependency of text semantics, shortening network training and predicted time. Experiments show that the processing effect of this method on word segmentation is similar to that of BI-LSTM-CRF (Bidirectional- Long Short Term Memory-Conditional Random Field) model, but the average predicted processing speed is 1.94 times that of BI-LSTM-CRF, effectively improving the efficiency of word segmentation processing." @default.
- W3006156918 created "2020-02-24" @default.
- W3006156918 creator A5016806564 @default.
- W3006156918 creator A5054879554 @default.
- W3006156918 creator A5067313726 @default.
- W3006156918 date "2020-01-01" @default.
- W3006156918 modified "2023-10-14" @default.
- W3006156918 title "Feature Extraction and Analysis of Natural Language Processing for Deep Learning English Language" @default.
- W3006156918 cites W1976468890 @default.
- W3006156918 cites W1993991024 @default.
- W3006156918 cites W2072551288 @default.
- W3006156918 cites W2100652304 @default.
- W3006156918 cites W2128279348 @default.
- W3006156918 cites W2583291693 @default.
- W3006156918 cites W2605644966 @default.
- W3006156918 cites W2611752399 @default.
- W3006156918 cites W2735974062 @default.
- W3006156918 cites W2750575765 @default.
- W3006156918 cites W2755624598 @default.
- W3006156918 cites W2783038397 @default.
- W3006156918 cites W2783606427 @default.
- W3006156918 cites W2784025535 @default.
- W3006156918 cites W2797124853 @default.
- W3006156918 cites W2800323872 @default.
- W3006156918 cites W2802388893 @default.
- W3006156918 cites W2803613314 @default.
- W3006156918 cites W2804047627 @default.
- W3006156918 cites W2892154397 @default.
- W3006156918 cites W2897020177 @default.
- W3006156918 cites W2901048538 @default.
- W3006156918 cites W2905258433 @default.
- W3006156918 cites W2926247598 @default.
- W3006156918 cites W2930749509 @default.
- W3006156918 cites W2940791172 @default.
- W3006156918 cites W2947399947 @default.
- W3006156918 cites W2947790787 @default.
- W3006156918 cites W2948817525 @default.
- W3006156918 cites W2952110468 @default.
- W3006156918 cites W2952243269 @default.
- W3006156918 cites W2952468414 @default.
- W3006156918 cites W2963988530 @default.
- W3006156918 cites W2965894868 @default.
- W3006156918 cites W2969688067 @default.
- W3006156918 cites W2971800190 @default.
- W3006156918 cites W2987695188 @default.
- W3006156918 cites W2990303645 @default.
- W3006156918 cites W2993119222 @default.
- W3006156918 cites W3021946797 @default.
- W3006156918 doi "https://doi.org/10.1109/access.2020.2974101" @default.
- W3006156918 hasPublicationYear "2020" @default.
- W3006156918 type Work @default.
- W3006156918 sameAs 3006156918 @default.
- W3006156918 citedByCount "53" @default.
- W3006156918 countsByYear W30061569182020 @default.
- W3006156918 countsByYear W30061569182021 @default.
- W3006156918 countsByYear W30061569182022 @default.
- W3006156918 countsByYear W30061569182023 @default.
- W3006156918 crossrefType "journal-article" @default.
- W3006156918 hasAuthorship W3006156918A5016806564 @default.
- W3006156918 hasAuthorship W3006156918A5054879554 @default.
- W3006156918 hasAuthorship W3006156918A5067313726 @default.
- W3006156918 hasBestOaLocation W30061569181 @default.
- W3006156918 hasConcept C108583219 @default.
- W3006156918 hasConcept C138885662 @default.
- W3006156918 hasConcept C147168706 @default.
- W3006156918 hasConcept C152565575 @default.
- W3006156918 hasConcept C154945302 @default.
- W3006156918 hasConcept C184337299 @default.
- W3006156918 hasConcept C185592680 @default.
- W3006156918 hasConcept C188027245 @default.
- W3006156918 hasConcept C199360897 @default.
- W3006156918 hasConcept C204321447 @default.
- W3006156918 hasConcept C2776401178 @default.
- W3006156918 hasConcept C28490314 @default.
- W3006156918 hasConcept C41008148 @default.
- W3006156918 hasConcept C41895202 @default.
- W3006156918 hasConcept C50644808 @default.
- W3006156918 hasConcept C52622490 @default.
- W3006156918 hasConcept C71139939 @default.
- W3006156918 hasConcept C89600930 @default.
- W3006156918 hasConcept C90805587 @default.
- W3006156918 hasConcept C98501671 @default.
- W3006156918 hasConceptScore W3006156918C108583219 @default.
- W3006156918 hasConceptScore W3006156918C138885662 @default.
- W3006156918 hasConceptScore W3006156918C147168706 @default.
- W3006156918 hasConceptScore W3006156918C152565575 @default.
- W3006156918 hasConceptScore W3006156918C154945302 @default.
- W3006156918 hasConceptScore W3006156918C184337299 @default.
- W3006156918 hasConceptScore W3006156918C185592680 @default.
- W3006156918 hasConceptScore W3006156918C188027245 @default.
- W3006156918 hasConceptScore W3006156918C199360897 @default.
- W3006156918 hasConceptScore W3006156918C204321447 @default.
- W3006156918 hasConceptScore W3006156918C2776401178 @default.
- W3006156918 hasConceptScore W3006156918C28490314 @default.
- W3006156918 hasConceptScore W3006156918C41008148 @default.
- W3006156918 hasConceptScore W3006156918C41895202 @default.
- W3006156918 hasConceptScore W3006156918C50644808 @default.
- W3006156918 hasConceptScore W3006156918C52622490 @default.