Matches in SemOpenAlex for { <https://semopenalex.org/work/W3006176448> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W3006176448 abstract "Social media (Facebook, Instagram, Twitter, etc.) nowadays can be used for analyzing the objects, e.g. political views, products, services, etc. To understand the performance of an object, the sentiment analysis has been widely used to get the review from the consumers or users (positive or negative responses). Today, in big date era, which is a component of industry 4.0, many corpora are available and can be accessed freely. A corpus can be utilized to train the model through some methods. In this paper a Naive-Bayes classifier was used to train a corpus from natural language toolkits (NLTK) corpora. As a case study, sentiment analysis for the sample movie “Avengers” was done from the twitter hashtag #avengersendgame. The paper also proposed the usage of a particular corpus to other different language implementations, e.g. for Indonesian language. Through the use of Tweepy and Pandas some Twitter tweets were retrieved and classified after pre-processing. The results showed the capability of the Naive-Bayes classifier both for English and Indonesian language." @default.
- W3006176448 created "2020-02-24" @default.
- W3006176448 creator A5005837181 @default.
- W3006176448 creator A5011503540 @default.
- W3006176448 creator A5077383357 @default.
- W3006176448 creator A5089966266 @default.
- W3006176448 date "2019-10-01" @default.
- W3006176448 modified "2023-10-16" @default.
- W3006176448 title "Corpus Usage for Sentiment Analysis of a Hashtag Twitter" @default.
- W3006176448 cites W1513052242 @default.
- W3006176448 cites W1532325895 @default.
- W3006176448 cites W2106581202 @default.
- W3006176448 cites W2114524997 @default.
- W3006176448 cites W2786038009 @default.
- W3006176448 cites W2937269099 @default.
- W3006176448 doi "https://doi.org/10.1109/icic47613.2019.8985772" @default.
- W3006176448 hasPublicationYear "2019" @default.
- W3006176448 type Work @default.
- W3006176448 sameAs 3006176448 @default.
- W3006176448 citedByCount "2" @default.
- W3006176448 countsByYear W30061764482020 @default.
- W3006176448 countsByYear W30061764482022 @default.
- W3006176448 crossrefType "proceedings-article" @default.
- W3006176448 hasAuthorship W3006176448A5005837181 @default.
- W3006176448 hasAuthorship W3006176448A5011503540 @default.
- W3006176448 hasAuthorship W3006176448A5077383357 @default.
- W3006176448 hasAuthorship W3006176448A5089966266 @default.
- W3006176448 hasConcept C12267149 @default.
- W3006176448 hasConcept C124101348 @default.
- W3006176448 hasConcept C136764020 @default.
- W3006176448 hasConcept C138885662 @default.
- W3006176448 hasConcept C154945302 @default.
- W3006176448 hasConcept C204321447 @default.
- W3006176448 hasConcept C2779207338 @default.
- W3006176448 hasConcept C41008148 @default.
- W3006176448 hasConcept C41895202 @default.
- W3006176448 hasConcept C518677369 @default.
- W3006176448 hasConcept C52001869 @default.
- W3006176448 hasConcept C66402592 @default.
- W3006176448 hasConcept C75684735 @default.
- W3006176448 hasConcept C95623464 @default.
- W3006176448 hasConceptScore W3006176448C12267149 @default.
- W3006176448 hasConceptScore W3006176448C124101348 @default.
- W3006176448 hasConceptScore W3006176448C136764020 @default.
- W3006176448 hasConceptScore W3006176448C138885662 @default.
- W3006176448 hasConceptScore W3006176448C154945302 @default.
- W3006176448 hasConceptScore W3006176448C204321447 @default.
- W3006176448 hasConceptScore W3006176448C2779207338 @default.
- W3006176448 hasConceptScore W3006176448C41008148 @default.
- W3006176448 hasConceptScore W3006176448C41895202 @default.
- W3006176448 hasConceptScore W3006176448C518677369 @default.
- W3006176448 hasConceptScore W3006176448C52001869 @default.
- W3006176448 hasConceptScore W3006176448C66402592 @default.
- W3006176448 hasConceptScore W3006176448C75684735 @default.
- W3006176448 hasConceptScore W3006176448C95623464 @default.
- W3006176448 hasLocation W30061764481 @default.
- W3006176448 hasOpenAccess W3006176448 @default.
- W3006176448 hasPrimaryLocation W30061764481 @default.
- W3006176448 hasRelatedWork W193255132 @default.
- W3006176448 hasRelatedWork W2077587655 @default.
- W3006176448 hasRelatedWork W2188514829 @default.
- W3006176448 hasRelatedWork W2415895704 @default.
- W3006176448 hasRelatedWork W2469782984 @default.
- W3006176448 hasRelatedWork W2494750134 @default.
- W3006176448 hasRelatedWork W2572678359 @default.
- W3006176448 hasRelatedWork W2608581744 @default.
- W3006176448 hasRelatedWork W2787952341 @default.
- W3006176448 hasRelatedWork W2792617786 @default.
- W3006176448 hasRelatedWork W2897415666 @default.
- W3006176448 hasRelatedWork W2921568439 @default.
- W3006176448 hasRelatedWork W2944815653 @default.
- W3006176448 hasRelatedWork W2974182162 @default.
- W3006176448 hasRelatedWork W3011196824 @default.
- W3006176448 hasRelatedWork W3096309246 @default.
- W3006176448 hasRelatedWork W3105772961 @default.
- W3006176448 hasRelatedWork W3107148055 @default.
- W3006176448 hasRelatedWork W3155113075 @default.
- W3006176448 hasRelatedWork W3174605811 @default.
- W3006176448 isParatext "false" @default.
- W3006176448 isRetracted "false" @default.
- W3006176448 magId "3006176448" @default.
- W3006176448 workType "article" @default.