Matches in SemOpenAlex for { <https://semopenalex.org/work/W3006181136> ?p ?o ?g. }
Showing items 1 to 61 of
61
with 100 items per page.
- W3006181136 abstract "Throughout the thesis, we will discuss, improve and provide a conceptual framework in which methods based on recurrence properties of chaotic dynamics can be understood. We will also provide new EVT-based methods to compute quantities of interest and introduce new useful indicators associated to the dynamics. Our results will have full mathematical rigor, although emphasis will be placed on physical applications and numerical computations, as the use of such methods is developing rapidly. We will start by an introductory chapter to the dynamical theory of extreme events, in which we will describe the principal results of the theory that will be used throughout the thesis. After a small chapter where we introduce some abjects that are characteristic of the invariant measure of the system, namely local dimensions and generalized dimensions, w1 devote the following chapters to the use of EVT to compute such dimensional quantities. One of these method defines naturally a navel global indicator on the hyperbolic properties of the system. ln these chapters, we will present several numerical applications of the methods, bath in real world and idealized systems, and study the influence of different kinds of noise on these indicators. We will then investigate a matter of physical importanc related to EVT: the statistics of visits in some particular small target subsets of the phase-space, in particular for partly random, noisy systems. The results presented in this section are mostly numerical and conjectural, but reveal some universal behavior of the statistics of visits. The eighth chapter makes the connection betweer several local quantities associated to the dynamics and computed using a finite amount of data (local dimensions, hitting times, return times) and the generalized dimensions of the system, that are computable by EVT methods. These relations, stated in the language of large deviation theory (that we will briefly present), have profound physical implications, and constitute a conceptual framework in which the distribution of such computed local quantities can be understood. We then take advantage of these connections to design further methods to compute the generalized dimensions of a system. Finally, in the last part of the thesis, which is more experimental, we extend the dynamical theory of extreme events to more complex observables, which will allow us to study phenomena evolving over long temporal scales. We will consider the example of firing cascades in a model of neural network. Through this example, we will introduce a navel approach to study such complex systems." @default.
- W3006181136 created "2020-02-24" @default.
- W3006181136 creator A5044550653 @default.
- W3006181136 date "2019-12-20" @default.
- W3006181136 modified "2023-09-23" @default.
- W3006181136 title "Extreme value theory for dynamical systems, with applications in climate and neuroscience" @default.
- W3006181136 hasPublicationYear "2019" @default.
- W3006181136 type Work @default.
- W3006181136 sameAs 3006181136 @default.
- W3006181136 citedByCount "0" @default.
- W3006181136 crossrefType "dissertation" @default.
- W3006181136 hasAuthorship W3006181136A5044550653 @default.
- W3006181136 hasConcept C105795698 @default.
- W3006181136 hasConcept C121332964 @default.
- W3006181136 hasConcept C121864883 @default.
- W3006181136 hasConcept C147581598 @default.
- W3006181136 hasConcept C151342819 @default.
- W3006181136 hasConcept C33923547 @default.
- W3006181136 hasConcept C41008148 @default.
- W3006181136 hasConcept C62520636 @default.
- W3006181136 hasConcept C79379906 @default.
- W3006181136 hasConcept C80444323 @default.
- W3006181136 hasConcept C97355855 @default.
- W3006181136 hasConceptScore W3006181136C105795698 @default.
- W3006181136 hasConceptScore W3006181136C121332964 @default.
- W3006181136 hasConceptScore W3006181136C121864883 @default.
- W3006181136 hasConceptScore W3006181136C147581598 @default.
- W3006181136 hasConceptScore W3006181136C151342819 @default.
- W3006181136 hasConceptScore W3006181136C33923547 @default.
- W3006181136 hasConceptScore W3006181136C41008148 @default.
- W3006181136 hasConceptScore W3006181136C62520636 @default.
- W3006181136 hasConceptScore W3006181136C79379906 @default.
- W3006181136 hasConceptScore W3006181136C80444323 @default.
- W3006181136 hasConceptScore W3006181136C97355855 @default.
- W3006181136 hasLocation W30061811361 @default.
- W3006181136 hasOpenAccess W3006181136 @default.
- W3006181136 hasPrimaryLocation W30061811361 @default.
- W3006181136 hasRelatedWork W101446171 @default.
- W3006181136 hasRelatedWork W1982423672 @default.
- W3006181136 hasRelatedWork W1987052901 @default.
- W3006181136 hasRelatedWork W2066588016 @default.
- W3006181136 hasRelatedWork W2068961135 @default.
- W3006181136 hasRelatedWork W2187950331 @default.
- W3006181136 hasRelatedWork W2339345425 @default.
- W3006181136 hasRelatedWork W2355949009 @default.
- W3006181136 hasRelatedWork W2385559461 @default.
- W3006181136 hasRelatedWork W2754674557 @default.
- W3006181136 hasRelatedWork W2806625101 @default.
- W3006181136 hasRelatedWork W2895927261 @default.
- W3006181136 hasRelatedWork W2915050775 @default.
- W3006181136 hasRelatedWork W2971345316 @default.
- W3006181136 hasRelatedWork W2974426924 @default.
- W3006181136 hasRelatedWork W3000666453 @default.
- W3006181136 hasRelatedWork W3042679101 @default.
- W3006181136 hasRelatedWork W3093612391 @default.
- W3006181136 hasRelatedWork W3104908327 @default.
- W3006181136 hasRelatedWork W3139690111 @default.
- W3006181136 isParatext "false" @default.
- W3006181136 isRetracted "false" @default.
- W3006181136 magId "3006181136" @default.
- W3006181136 workType "dissertation" @default.