Matches in SemOpenAlex for { <https://semopenalex.org/work/W3006206197> ?p ?o ?g. }
- W3006206197 endingPage "e1006717" @default.
- W3006206197 startingPage "e1006717" @default.
- W3006206197 abstract "Transcription elongation can be modelled as a three step process, involving polymerase translocation, NTP binding, and nucleotide incorporation into the nascent mRNA. This cycle of events can be simulated at the single-molecule level as a continuous-time Markov process using parameters derived from single-molecule experiments. Previously developed models differ in the way they are parameterised, and in their incorporation of partial equilibrium approximations. We have formulated a hierarchical network comprised of 12 sequence-dependent transcription elongation models. The simplest model has two parameters and assumes that both translocation and NTP binding can be modelled as equilibrium processes. The most complex model has six parameters makes no partial equilibrium assumptions. We systematically compared the ability of these models to explain published force-velocity data, using approximate Bayesian computation. This analysis was performed using data for the RNA polymerase complexes of E. coli, S. cerevisiae and Bacteriophage T7. Our analysis indicates that the polymerases differ significantly in their translocation rates, with the rates in T7 pol being fast compared to E. coli RNAP and S. cerevisiae pol II. Different models are applicable in different cases. We also show that all three RNA polymerases have an energetic preference for the posttranslocated state over the pretranslocated state. A Bayesian inference and model selection framework, like the one presented in this publication, should be routinely applicable to the interrogation of single-molecule datasets." @default.
- W3006206197 created "2020-02-24" @default.
- W3006206197 creator A5052240308 @default.
- W3006206197 creator A5065363073 @default.
- W3006206197 creator A5081914914 @default.
- W3006206197 date "2020-02-14" @default.
- W3006206197 modified "2023-10-17" @default.
- W3006206197 title "Bayesian inference and comparison of stochastic transcription elongation models" @default.
- W3006206197 cites W1517745775 @default.
- W3006206197 cites W1646260588 @default.
- W3006206197 cites W184098300 @default.
- W3006206197 cites W1869042642 @default.
- W3006206197 cites W1932647015 @default.
- W3006206197 cites W1948506902 @default.
- W3006206197 cites W1964259728 @default.
- W3006206197 cites W1964852137 @default.
- W3006206197 cites W1965175390 @default.
- W3006206197 cites W1965642201 @default.
- W3006206197 cites W1969775044 @default.
- W3006206197 cites W1970103400 @default.
- W3006206197 cites W1972597018 @default.
- W3006206197 cites W1979275259 @default.
- W3006206197 cites W1982433583 @default.
- W3006206197 cites W1983732913 @default.
- W3006206197 cites W1984606131 @default.
- W3006206197 cites W2000290866 @default.
- W3006206197 cites W2003133442 @default.
- W3006206197 cites W2008338420 @default.
- W3006206197 cites W2011762313 @default.
- W3006206197 cites W2012958593 @default.
- W3006206197 cites W2014090403 @default.
- W3006206197 cites W2015349370 @default.
- W3006206197 cites W2019009046 @default.
- W3006206197 cites W2020592283 @default.
- W3006206197 cites W2023346112 @default.
- W3006206197 cites W2025111140 @default.
- W3006206197 cites W2026612033 @default.
- W3006206197 cites W2049020763 @default.
- W3006206197 cites W2052604571 @default.
- W3006206197 cites W2053625042 @default.
- W3006206197 cites W2061376845 @default.
- W3006206197 cites W2062934556 @default.
- W3006206197 cites W2063699818 @default.
- W3006206197 cites W2065234950 @default.
- W3006206197 cites W2066664390 @default.
- W3006206197 cites W2078185190 @default.
- W3006206197 cites W2078472824 @default.
- W3006206197 cites W2079493448 @default.
- W3006206197 cites W2083220911 @default.
- W3006206197 cites W2086140950 @default.
- W3006206197 cites W2091424423 @default.
- W3006206197 cites W2091727198 @default.
- W3006206197 cites W2097205369 @default.
- W3006206197 cites W2098621794 @default.
- W3006206197 cites W2101202966 @default.
- W3006206197 cites W2101703936 @default.
- W3006206197 cites W2102686303 @default.
- W3006206197 cites W2104586872 @default.
- W3006206197 cites W2104728958 @default.
- W3006206197 cites W2106565812 @default.
- W3006206197 cites W2108607919 @default.
- W3006206197 cites W2110725132 @default.
- W3006206197 cites W2126466006 @default.
- W3006206197 cites W2135487357 @default.
- W3006206197 cites W2135995702 @default.
- W3006206197 cites W2138963475 @default.
- W3006206197 cites W2141634848 @default.
- W3006206197 cites W2148534890 @default.
- W3006206197 cites W2148717833 @default.
- W3006206197 cites W2155418451 @default.
- W3006206197 cites W2155748850 @default.
- W3006206197 cites W2155952708 @default.
- W3006206197 cites W2167030304 @default.
- W3006206197 cites W2167092674 @default.
- W3006206197 cites W2167150894 @default.
- W3006206197 cites W2170702012 @default.
- W3006206197 cites W2804829717 @default.
- W3006206197 cites W2891853502 @default.
- W3006206197 cites W621546036 @default.
- W3006206197 doi "https://doi.org/10.1371/journal.pcbi.1006717" @default.
- W3006206197 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7046298" @default.
- W3006206197 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32059006" @default.
- W3006206197 hasPublicationYear "2020" @default.
- W3006206197 type Work @default.
- W3006206197 sameAs 3006206197 @default.
- W3006206197 citedByCount "5" @default.
- W3006206197 countsByYear W30062061972020 @default.
- W3006206197 countsByYear W30062061972021 @default.
- W3006206197 crossrefType "journal-article" @default.
- W3006206197 hasAuthorship W3006206197A5052240308 @default.
- W3006206197 hasAuthorship W3006206197A5065363073 @default.
- W3006206197 hasAuthorship W3006206197A5081914914 @default.
- W3006206197 hasBestOaLocation W30062061971 @default.
- W3006206197 hasConcept C104317684 @default.
- W3006206197 hasConcept C105795698 @default.
- W3006206197 hasConcept C107673813 @default.
- W3006206197 hasConcept C138885662 @default.
- W3006206197 hasConcept C160234255 @default.