Matches in SemOpenAlex for { <https://semopenalex.org/work/W3006225682> ?p ?o ?g. }
- W3006225682 endingPage "254" @default.
- W3006225682 startingPage "249" @default.
- W3006225682 abstract "With the advancement of computational approaches and abundance of biomedical data, a broad range of neurodegenerative disease models have been developed. In this review, we argue that computational models can be both relevant and useful in neurodegenerative disease research and although the current established models have limitations in clinical practice, artificial intelligence has the potential to overcome deficiencies encountered by these models, which in turn can improve our understanding of disease.In recent years, diverse computational approaches have been used to shed light on different aspects of neurodegenerative disease models. For example, linear and nonlinear mixed models, self-modeling regression, differential equation models, and event-based models have been applied to provide a better understanding of disease progression patterns and biomarker trajectories. Additionally, the Cox-regression technique, Bayesian network models, and deep-learning-based approaches have been used to predict the probability of future incidence of disease, whereas nonnegative matrix factorization, nonhierarchical cluster analysis, hierarchical agglomerative clustering, and deep-learning-based approaches have been employed to stratify patients based on their disease subtypes. Furthermore, the interpretation of neurodegenerative disease data is possible through knowledge-based models which use prior knowledge to complement data-driven analyses. These knowledge-based models can include pathway-centric approaches to establish pathways perturbed in a given condition, as well as disease-specific knowledge maps, which elucidate the mechanisms involved in a given disease. Collectively, these established models have revealed high granular details and insights into neurodegenerative disease models.In conjunction with increasingly advanced computational approaches, a wide spectrum of neurodegenerative disease models, which can be broadly categorized into data-driven and knowledge-driven, have been developed. We review the state of the art data and knowledge-driven models and discuss the necessary steps which are vital to bring them into clinical application." @default.
- W3006225682 created "2020-02-24" @default.
- W3006225682 creator A5003139478 @default.
- W3006225682 creator A5012235619 @default.
- W3006225682 creator A5047702360 @default.
- W3006225682 date "2020-04-01" @default.
- W3006225682 modified "2023-09-27" @default.
- W3006225682 title "Data science in neurodegenerative disease: its capabilities, limitations, and perspectives" @default.
- W3006225682 cites W1500026344 @default.
- W3006225682 cites W1968698114 @default.
- W3006225682 cites W1977098485 @default.
- W3006225682 cites W1993571512 @default.
- W3006225682 cites W2000861924 @default.
- W3006225682 cites W2014117421 @default.
- W3006225682 cites W2023250031 @default.
- W3006225682 cites W2033105784 @default.
- W3006225682 cites W2038003677 @default.
- W3006225682 cites W2038872861 @default.
- W3006225682 cites W2064913229 @default.
- W3006225682 cites W2066081650 @default.
- W3006225682 cites W2083735471 @default.
- W3006225682 cites W2097453652 @default.
- W3006225682 cites W2100980426 @default.
- W3006225682 cites W2110759468 @default.
- W3006225682 cites W2125677766 @default.
- W3006225682 cites W2128873861 @default.
- W3006225682 cites W2134711807 @default.
- W3006225682 cites W2136195493 @default.
- W3006225682 cites W2155513557 @default.
- W3006225682 cites W2167840686 @default.
- W3006225682 cites W2212875100 @default.
- W3006225682 cites W2399303024 @default.
- W3006225682 cites W2400441069 @default.
- W3006225682 cites W2494890893 @default.
- W3006225682 cites W2598992304 @default.
- W3006225682 cites W2600619590 @default.
- W3006225682 cites W2605948732 @default.
- W3006225682 cites W2606029312 @default.
- W3006225682 cites W2606075675 @default.
- W3006225682 cites W2608472446 @default.
- W3006225682 cites W2612001459 @default.
- W3006225682 cites W2615239903 @default.
- W3006225682 cites W2618529284 @default.
- W3006225682 cites W2626513856 @default.
- W3006225682 cites W2656695974 @default.
- W3006225682 cites W2739137023 @default.
- W3006225682 cites W2740891605 @default.
- W3006225682 cites W2755226788 @default.
- W3006225682 cites W2772515592 @default.
- W3006225682 cites W2783115824 @default.
- W3006225682 cites W2783889312 @default.
- W3006225682 cites W2791743234 @default.
- W3006225682 cites W2794725150 @default.
- W3006225682 cites W2801099543 @default.
- W3006225682 cites W2807615161 @default.
- W3006225682 cites W2884050036 @default.
- W3006225682 cites W2884419083 @default.
- W3006225682 cites W2901933822 @default.
- W3006225682 cites W2910111050 @default.
- W3006225682 cites W2914209001 @default.
- W3006225682 cites W2918712461 @default.
- W3006225682 cites W2921518676 @default.
- W3006225682 cites W2951651936 @default.
- W3006225682 cites W2974138729 @default.
- W3006225682 cites W2980344574 @default.
- W3006225682 cites W2987169144 @default.
- W3006225682 cites W3103980728 @default.
- W3006225682 cites W4210361961 @default.
- W3006225682 cites W4249491508 @default.
- W3006225682 doi "https://doi.org/10.1097/wco.0000000000000795" @default.
- W3006225682 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7077964" @default.
- W3006225682 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32073441" @default.
- W3006225682 hasPublicationYear "2020" @default.
- W3006225682 type Work @default.
- W3006225682 sameAs 3006225682 @default.
- W3006225682 citedByCount "15" @default.
- W3006225682 countsByYear W30062256822020 @default.
- W3006225682 countsByYear W30062256822021 @default.
- W3006225682 countsByYear W30062256822022 @default.
- W3006225682 countsByYear W30062256822023 @default.
- W3006225682 crossrefType "journal-article" @default.
- W3006225682 hasAuthorship W3006225682A5003139478 @default.
- W3006225682 hasAuthorship W3006225682A5012235619 @default.
- W3006225682 hasAuthorship W3006225682A5047702360 @default.
- W3006225682 hasBestOaLocation W30062256821 @default.
- W3006225682 hasConcept C107673813 @default.
- W3006225682 hasConcept C119857082 @default.
- W3006225682 hasConcept C142724271 @default.
- W3006225682 hasConcept C154945302 @default.
- W3006225682 hasConcept C2522767166 @default.
- W3006225682 hasConcept C2779134260 @default.
- W3006225682 hasConcept C41008148 @default.
- W3006225682 hasConcept C66024118 @default.
- W3006225682 hasConcept C71924100 @default.
- W3006225682 hasConcept C73555534 @default.
- W3006225682 hasConceptScore W3006225682C107673813 @default.
- W3006225682 hasConceptScore W3006225682C119857082 @default.
- W3006225682 hasConceptScore W3006225682C142724271 @default.