Matches in SemOpenAlex for { <https://semopenalex.org/work/W3006229246> ?p ?o ?g. }
Showing items 1 to 54 of
54
with 100 items per page.
- W3006229246 endingPage "235" @default.
- W3006229246 startingPage "230" @default.
- W3006229246 abstract "In minimally invasive procedures, a standard routine of observing the operational site is using image guidance. X-ray fluoroscopy using C-arm systems is widely used. In complex cases, overlays of preoperative 3-D images are necessary to show structures that are not visible in the 2-D X-ray images. The alignment quality may degenerate during an intervention, e. g. due to patient motion, and a new registration needs to be performed. However, a decrease in alignment quality is not always obvious, as the clinician often focuses on structures which are not visible in the 2-D image, and only these structures are visualized in the overlay. In this paper, we propose a learning-based method for detecting different degrees of misalignment. The method is based on point-to-plane correspondences and a pre-trained neural network originally used for detecting good correspondences. The network is extended by a classification branch to detect different levels of misalignment. Compared to simply using the normalized gradient correlation similarity measure as a basis for the decision, we show a highly improved performance, e. g. improving the AUC score from 0.918 to 0.993 for detecting misalignment above 5mm of mean re-projection distance." @default.
- W3006229246 created "2020-02-24" @default.
- W3006229246 creator A5010021475 @default.
- W3006229246 creator A5032499810 @default.
- W3006229246 creator A5055122066 @default.
- W3006229246 creator A5085351854 @default.
- W3006229246 creator A5073716536 @default.
- W3006229246 date "2020-01-01" @default.
- W3006229246 modified "2023-09-26" @default.
- W3006229246 title "Learning-Based Misalignment Detection for 2-D/3-D Overlays" @default.
- W3006229246 cites W1424913038 @default.
- W3006229246 cites W2126440019 @default.
- W3006229246 cites W2166490563 @default.
- W3006229246 cites W2612495447 @default.
- W3006229246 cites W2809152687 @default.
- W3006229246 cites W2963351448 @default.
- W3006229246 doi "https://doi.org/10.1007/978-3-658-29267-6_52" @default.
- W3006229246 hasPublicationYear "2020" @default.
- W3006229246 type Work @default.
- W3006229246 sameAs 3006229246 @default.
- W3006229246 citedByCount "0" @default.
- W3006229246 crossrefType "book-chapter" @default.
- W3006229246 hasAuthorship W3006229246A5010021475 @default.
- W3006229246 hasAuthorship W3006229246A5032499810 @default.
- W3006229246 hasAuthorship W3006229246A5055122066 @default.
- W3006229246 hasAuthorship W3006229246A5073716536 @default.
- W3006229246 hasAuthorship W3006229246A5085351854 @default.
- W3006229246 hasConcept C111919701 @default.
- W3006229246 hasConcept C136085584 @default.
- W3006229246 hasConcept C154945302 @default.
- W3006229246 hasConcept C41008148 @default.
- W3006229246 hasConceptScore W3006229246C111919701 @default.
- W3006229246 hasConceptScore W3006229246C136085584 @default.
- W3006229246 hasConceptScore W3006229246C154945302 @default.
- W3006229246 hasConceptScore W3006229246C41008148 @default.
- W3006229246 hasLocation W30062292461 @default.
- W3006229246 hasOpenAccess W3006229246 @default.
- W3006229246 hasPrimaryLocation W30062292461 @default.
- W3006229246 hasRelatedWork W1608634069 @default.
- W3006229246 hasRelatedWork W1682766214 @default.
- W3006229246 hasRelatedWork W1976386543 @default.
- W3006229246 hasRelatedWork W2079845068 @default.
- W3006229246 hasRelatedWork W2097580618 @default.
- W3006229246 hasRelatedWork W2104417748 @default.
- W3006229246 hasRelatedWork W2380319043 @default.
- W3006229246 hasRelatedWork W2390878060 @default.
- W3006229246 hasRelatedWork W293090919 @default.
- W3006229246 hasRelatedWork W176894511 @default.
- W3006229246 isParatext "false" @default.
- W3006229246 isRetracted "false" @default.
- W3006229246 magId "3006229246" @default.
- W3006229246 workType "book-chapter" @default.