Matches in SemOpenAlex for { <https://semopenalex.org/work/W3006260484> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W3006260484 endingPage "204" @default.
- W3006260484 startingPage "187" @default.
- W3006260484 abstract "Traffic forecasting is a well-known strategy that supports road users and decision-makers to plan their movements on the roads and to improve the management of traffic, respectively. Current data availability and growing computational capacities have increased the use of machine learning methods to tackle traffic forecasting, which is mostly modelled as a supervised regression problem. Despite the broad range of machine learning algorithms, there are no baselines to determine what are the most suitable methods and their hyper-parameters configurations to approach the different traffic forecasting regression problems reported in the literature. In machine learning, this is known as the model selection problem, and although automated machine learning methods have proved successful dealing with this problem in other areas, it has hardly been explored in traffic forecasting. In this work, we go deeply into the benefits of automated machine learning in the aforementioned field. To this end, we use Auto-WEKA, a well-known AutoML method, on a subset of families of traffic forecasting regression problems characterised by having loop detectors, as traffic data source, and scales of predictions focused on the point and the road segment levels within freeway and urban environments. The experiments include data from the Caltrans Performance Measurement System and the Madrid City Council. The results show that AutoML methods can provide competitive results for TF with low human intervention." @default.
- W3006260484 created "2020-02-24" @default.
- W3006260484 creator A5019554254 @default.
- W3006260484 creator A5060490526 @default.
- W3006260484 creator A5075541426 @default.
- W3006260484 date "2020-01-01" @default.
- W3006260484 modified "2023-09-25" @default.
- W3006260484 title "Evaluating Automated Machine Learning on Supervised Regression Traffic Forecasting Problems" @default.
- W3006260484 cites W1533788422 @default.
- W3006260484 cites W1967444754 @default.
- W3006260484 cites W2007707130 @default.
- W3006260484 cites W2028336648 @default.
- W3006260484 cites W2040297119 @default.
- W3006260484 cites W2069689867 @default.
- W3006260484 cites W2074702228 @default.
- W3006260484 cites W2089277853 @default.
- W3006260484 cites W2102539288 @default.
- W3006260484 cites W2111991989 @default.
- W3006260484 cites W2112364454 @default.
- W3006260484 cites W2165466912 @default.
- W3006260484 cites W2262964682 @default.
- W3006260484 cites W2274750026 @default.
- W3006260484 cites W2309832917 @default.
- W3006260484 cites W2613331518 @default.
- W3006260484 cites W2622164924 @default.
- W3006260484 cites W2783239537 @default.
- W3006260484 cites W2789788750 @default.
- W3006260484 cites W2799109291 @default.
- W3006260484 cites W2808721728 @default.
- W3006260484 cites W2809880372 @default.
- W3006260484 cites W2891181163 @default.
- W3006260484 cites W2895931553 @default.
- W3006260484 cites W2906154449 @default.
- W3006260484 cites W2945565259 @default.
- W3006260484 cites W2951775784 @default.
- W3006260484 cites W3103592215 @default.
- W3006260484 doi "https://doi.org/10.1007/978-3-030-34409-2_11" @default.
- W3006260484 hasPublicationYear "2020" @default.
- W3006260484 type Work @default.
- W3006260484 sameAs 3006260484 @default.
- W3006260484 citedByCount "7" @default.
- W3006260484 countsByYear W30062604842020 @default.
- W3006260484 countsByYear W30062604842021 @default.
- W3006260484 countsByYear W30062604842022 @default.
- W3006260484 crossrefType "book-chapter" @default.
- W3006260484 hasAuthorship W3006260484A5019554254 @default.
- W3006260484 hasAuthorship W3006260484A5060490526 @default.
- W3006260484 hasAuthorship W3006260484A5075541426 @default.
- W3006260484 hasBestOaLocation W30062604842 @default.
- W3006260484 hasConcept C105795698 @default.
- W3006260484 hasConcept C119857082 @default.
- W3006260484 hasConcept C127413603 @default.
- W3006260484 hasConcept C136389625 @default.
- W3006260484 hasConcept C146978453 @default.
- W3006260484 hasConcept C152877465 @default.
- W3006260484 hasConcept C154945302 @default.
- W3006260484 hasConcept C204323151 @default.
- W3006260484 hasConcept C33923547 @default.
- W3006260484 hasConcept C41008148 @default.
- W3006260484 hasConcept C50644808 @default.
- W3006260484 hasConcept C83546350 @default.
- W3006260484 hasConceptScore W3006260484C105795698 @default.
- W3006260484 hasConceptScore W3006260484C119857082 @default.
- W3006260484 hasConceptScore W3006260484C127413603 @default.
- W3006260484 hasConceptScore W3006260484C136389625 @default.
- W3006260484 hasConceptScore W3006260484C146978453 @default.
- W3006260484 hasConceptScore W3006260484C152877465 @default.
- W3006260484 hasConceptScore W3006260484C154945302 @default.
- W3006260484 hasConceptScore W3006260484C204323151 @default.
- W3006260484 hasConceptScore W3006260484C33923547 @default.
- W3006260484 hasConceptScore W3006260484C41008148 @default.
- W3006260484 hasConceptScore W3006260484C50644808 @default.
- W3006260484 hasConceptScore W3006260484C83546350 @default.
- W3006260484 hasLocation W30062604841 @default.
- W3006260484 hasLocation W30062604842 @default.
- W3006260484 hasOpenAccess W3006260484 @default.
- W3006260484 hasPrimaryLocation W30062604841 @default.
- W3006260484 hasRelatedWork W1970158984 @default.
- W3006260484 hasRelatedWork W2359645249 @default.
- W3006260484 hasRelatedWork W3162567751 @default.
- W3006260484 hasRelatedWork W3207148850 @default.
- W3006260484 hasRelatedWork W3210156800 @default.
- W3006260484 hasRelatedWork W4221088574 @default.
- W3006260484 hasRelatedWork W4226172683 @default.
- W3006260484 hasRelatedWork W4285260836 @default.
- W3006260484 hasRelatedWork W4362670612 @default.
- W3006260484 hasRelatedWork W1629725936 @default.
- W3006260484 isParatext "false" @default.
- W3006260484 isRetracted "false" @default.
- W3006260484 magId "3006260484" @default.
- W3006260484 workType "book-chapter" @default.