Matches in SemOpenAlex for { <https://semopenalex.org/work/W3006280648> ?p ?o ?g. }
- W3006280648 endingPage "044505" @default.
- W3006280648 startingPage "044505" @default.
- W3006280648 abstract "The second part of this two-part study develops a systematic framework for parameter identification in polymer electrolyte membrane (PEM) fuel cell models. The framework utilizes the extended local sensitivity results of the first part to find an optimal subset of parameters for identification. This is achieved through an optimization algorithm that maximizes the well-known D-optimality criterion. The sensitivity data are then used for optimal experimental design (OED) to ensure that the resulting experiments are maximally informative for the purpose of parameter identification. To make the experimental design problem computationally tractable, the optimal experiments are chosen from a predefined library of operating conditions. Finally, a multi-step identification algorithm is proposed to formulate a regularized and well-conditioned optimization problem. The identification algorithm utilizes the unique structure of output predictions, wherein sensitivities to parameter perturbations typically vary with the load. To verify each component of the framework, synthetic experimental data generated with the model using nominal parameter values are used in an identification case study. The results confirm that each of these components plays a critical role in successful parameter identification." @default.
- W3006280648 created "2020-02-24" @default.
- W3006280648 creator A5055040028 @default.
- W3006280648 creator A5076004234 @default.
- W3006280648 creator A5076866123 @default.
- W3006280648 creator A5088937367 @default.
- W3006280648 creator A5091193807 @default.
- W3006280648 date "2020-01-03" @default.
- W3006280648 modified "2023-10-18" @default.
- W3006280648 title "Effective Parameterization of PEM Fuel Cell Models—Part II: Robust Parameter Subset Selection, Robust Optimal Experimental Design, and Multi-Step Parameter Identification Algorithm" @default.
- W3006280648 cites W1596850505 @default.
- W3006280648 cites W1774100079 @default.
- W3006280648 cites W1967988563 @default.
- W3006280648 cites W1971663243 @default.
- W3006280648 cites W1976754079 @default.
- W3006280648 cites W1991238279 @default.
- W3006280648 cites W1994599417 @default.
- W3006280648 cites W1998523300 @default.
- W3006280648 cites W2002929894 @default.
- W3006280648 cites W2008932415 @default.
- W3006280648 cites W2019003622 @default.
- W3006280648 cites W2029287174 @default.
- W3006280648 cites W2031525087 @default.
- W3006280648 cites W2039477419 @default.
- W3006280648 cites W2042661629 @default.
- W3006280648 cites W2045949646 @default.
- W3006280648 cites W2045994776 @default.
- W3006280648 cites W2048345467 @default.
- W3006280648 cites W2056734148 @default.
- W3006280648 cites W2069805373 @default.
- W3006280648 cites W2073960301 @default.
- W3006280648 cites W2098649922 @default.
- W3006280648 cites W2106328937 @default.
- W3006280648 cites W2113105229 @default.
- W3006280648 cites W2124293649 @default.
- W3006280648 cites W2132694307 @default.
- W3006280648 cites W2150124657 @default.
- W3006280648 cites W2165972721 @default.
- W3006280648 cites W2167630836 @default.
- W3006280648 cites W2198835934 @default.
- W3006280648 cites W2320477252 @default.
- W3006280648 cites W2344785244 @default.
- W3006280648 cites W2529449433 @default.
- W3006280648 cites W2561245530 @default.
- W3006280648 cites W2596078528 @default.
- W3006280648 cites W2601445849 @default.
- W3006280648 cites W2783208875 @default.
- W3006280648 cites W2791194469 @default.
- W3006280648 cites W2799306742 @default.
- W3006280648 cites W2891143741 @default.
- W3006280648 cites W2937257272 @default.
- W3006280648 cites W2949836709 @default.
- W3006280648 cites W2962771080 @default.
- W3006280648 cites W3005195144 @default.
- W3006280648 cites W3006342679 @default.
- W3006280648 cites W3215186461 @default.
- W3006280648 cites W4242686682 @default.
- W3006280648 doi "https://doi.org/10.1149/1945-7111/ab7092" @default.
- W3006280648 hasPublicationYear "2020" @default.
- W3006280648 type Work @default.
- W3006280648 sameAs 3006280648 @default.
- W3006280648 citedByCount "8" @default.
- W3006280648 countsByYear W30062806482020 @default.
- W3006280648 countsByYear W30062806482021 @default.
- W3006280648 countsByYear W30062806482022 @default.
- W3006280648 countsByYear W30062806482023 @default.
- W3006280648 crossrefType "journal-article" @default.
- W3006280648 hasAuthorship W3006280648A5055040028 @default.
- W3006280648 hasAuthorship W3006280648A5076004234 @default.
- W3006280648 hasAuthorship W3006280648A5076866123 @default.
- W3006280648 hasAuthorship W3006280648A5088937367 @default.
- W3006280648 hasAuthorship W3006280648A5091193807 @default.
- W3006280648 hasBestOaLocation W30062806481 @default.
- W3006280648 hasConcept C105795698 @default.
- W3006280648 hasConcept C11413529 @default.
- W3006280648 hasConcept C116834253 @default.
- W3006280648 hasConcept C119247159 @default.
- W3006280648 hasConcept C119857082 @default.
- W3006280648 hasConcept C124101348 @default.
- W3006280648 hasConcept C126255220 @default.
- W3006280648 hasConcept C127413603 @default.
- W3006280648 hasConcept C167928553 @default.
- W3006280648 hasConcept C186394612 @default.
- W3006280648 hasConcept C21200559 @default.
- W3006280648 hasConcept C24326235 @default.
- W3006280648 hasConcept C2780009758 @default.
- W3006280648 hasConcept C2983447341 @default.
- W3006280648 hasConcept C33923547 @default.
- W3006280648 hasConcept C34559072 @default.
- W3006280648 hasConcept C41008148 @default.
- W3006280648 hasConcept C59822182 @default.
- W3006280648 hasConcept C79610928 @default.
- W3006280648 hasConcept C81917197 @default.
- W3006280648 hasConcept C86803240 @default.
- W3006280648 hasConceptScore W3006280648C105795698 @default.
- W3006280648 hasConceptScore W3006280648C11413529 @default.
- W3006280648 hasConceptScore W3006280648C116834253 @default.
- W3006280648 hasConceptScore W3006280648C119247159 @default.