Matches in SemOpenAlex for { <https://semopenalex.org/work/W3006430864> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W3006430864 endingPage "31125" @default.
- W3006430864 startingPage "31114" @default.
- W3006430864 abstract "Tibetan medicine has a long history as a traditional ethnic medicine in China. It is playing an important role in the medical system in northwestern of China, and which has attracted more and more attention due to its unique diagnostic system and clinical efficacy. Meanwhile, as the data mining technology has been widely used in traditional Chinese medicine (TCM), its application in the field of Tibetan medicine has also launched preliminarily. In this paper, we are focusing on Chronic Atrophic Gastritis (CAG) which is a typical gastrointestinal disease in the plateau area, and a novel back-propagation (BP) network model is proposed for Tibetan medical syndrome classification and prediction. K-means clustering algorithm was firstly implemented on the diagnostic data which was obtained from the Qinghai Provincial Tibetan Hospital, and then Correlation-based Feature Selection (CFS) method was adopted for feature selection. The selected feature vectors were finally put into the proposed BP network for training and testing. In order to overcome BP network's typical shortcomings including slow convergence and easy to overfit, we use a method based on Gaussian distribution to improve weights initialization, and dynamically adjusted the learning rate using the learning rate exponential decay method. Further, we add regularization to the loss function to prevent overfitting. Ultimately, the experiment achieved an accuracy of 99.09%, which improved significantly after improvement and achieved better result compared with other classification methods." @default.
- W3006430864 created "2020-02-24" @default.
- W3006430864 creator A5036214300 @default.
- W3006430864 creator A5040721382 @default.
- W3006430864 creator A5049397668 @default.
- W3006430864 creator A5054079306 @default.
- W3006430864 creator A5086133021 @default.
- W3006430864 date "2020-01-01" @default.
- W3006430864 modified "2023-10-15" @default.
- W3006430864 title "Classification and Prediction of Tibetan Medical Syndrome Based on the Improved BP Neural Network" @default.
- W3006430864 cites W1498436455 @default.
- W3006430864 cites W1554576613 @default.
- W3006430864 cites W2008353316 @default.
- W3006430864 cites W2033513436 @default.
- W3006430864 cites W2046084401 @default.
- W3006430864 cites W2609106727 @default.
- W3006430864 cites W2940785858 @default.
- W3006430864 cites W2949419500 @default.
- W3006430864 cites W2964054038 @default.
- W3006430864 cites W2976213096 @default.
- W3006430864 doi "https://doi.org/10.1109/access.2020.2973304" @default.
- W3006430864 hasPublicationYear "2020" @default.
- W3006430864 type Work @default.
- W3006430864 sameAs 3006430864 @default.
- W3006430864 citedByCount "6" @default.
- W3006430864 countsByYear W30064308642020 @default.
- W3006430864 countsByYear W30064308642021 @default.
- W3006430864 countsByYear W30064308642022 @default.
- W3006430864 countsByYear W30064308642023 @default.
- W3006430864 crossrefType "journal-article" @default.
- W3006430864 hasAuthorship W3006430864A5036214300 @default.
- W3006430864 hasAuthorship W3006430864A5040721382 @default.
- W3006430864 hasAuthorship W3006430864A5049397668 @default.
- W3006430864 hasAuthorship W3006430864A5054079306 @default.
- W3006430864 hasAuthorship W3006430864A5086133021 @default.
- W3006430864 hasBestOaLocation W30064308641 @default.
- W3006430864 hasConcept C114466953 @default.
- W3006430864 hasConcept C119857082 @default.
- W3006430864 hasConcept C124101348 @default.
- W3006430864 hasConcept C148483581 @default.
- W3006430864 hasConcept C153180895 @default.
- W3006430864 hasConcept C154945302 @default.
- W3006430864 hasConcept C199360897 @default.
- W3006430864 hasConcept C22019652 @default.
- W3006430864 hasConcept C41008148 @default.
- W3006430864 hasConcept C50644808 @default.
- W3006430864 hasConcept C73555534 @default.
- W3006430864 hasConceptScore W3006430864C114466953 @default.
- W3006430864 hasConceptScore W3006430864C119857082 @default.
- W3006430864 hasConceptScore W3006430864C124101348 @default.
- W3006430864 hasConceptScore W3006430864C148483581 @default.
- W3006430864 hasConceptScore W3006430864C153180895 @default.
- W3006430864 hasConceptScore W3006430864C154945302 @default.
- W3006430864 hasConceptScore W3006430864C199360897 @default.
- W3006430864 hasConceptScore W3006430864C22019652 @default.
- W3006430864 hasConceptScore W3006430864C41008148 @default.
- W3006430864 hasConceptScore W3006430864C50644808 @default.
- W3006430864 hasConceptScore W3006430864C73555534 @default.
- W3006430864 hasFunder F4320321001 @default.
- W3006430864 hasFunder F4320322922 @default.
- W3006430864 hasFunder F4320326280 @default.
- W3006430864 hasFunder F4320335921 @default.
- W3006430864 hasLocation W30064308641 @default.
- W3006430864 hasOpenAccess W3006430864 @default.
- W3006430864 hasPrimaryLocation W30064308641 @default.
- W3006430864 hasRelatedWork W1996541855 @default.
- W3006430864 hasRelatedWork W2742991909 @default.
- W3006430864 hasRelatedWork W2767651786 @default.
- W3006430864 hasRelatedWork W2940336242 @default.
- W3006430864 hasRelatedWork W2989932438 @default.
- W3006430864 hasRelatedWork W3099765033 @default.
- W3006430864 hasRelatedWork W3174463126 @default.
- W3006430864 hasRelatedWork W3208326136 @default.
- W3006430864 hasRelatedWork W4200100536 @default.
- W3006430864 hasRelatedWork W4210794429 @default.
- W3006430864 hasVolume "8" @default.
- W3006430864 isParatext "false" @default.
- W3006430864 isRetracted "false" @default.
- W3006430864 magId "3006430864" @default.
- W3006430864 workType "article" @default.