Matches in SemOpenAlex for { <https://semopenalex.org/work/W3006468863> ?p ?o ?g. }
- W3006468863 abstract "Abstract Serial correlation in a hydrometeorological time series can have deleterious effects on trend detection tests. To account for significant autocorrelation detected in datasets, various techniques have been developed over time, each having their own assumptions and accuracy. Furthermore, the existence of positive or negative serial correlation has dissimilar effects on these statistical techniques. This research compares the power and Type I error rates of various well‐known and several newer techniques to account for positive and negative serial correlation in combination with the Mann‐Kendall nonparametric trend test. The study additionally explores the application of these techniques in the presence of higher order dependence structures. Through a case study of southern Ontario watersheds, it is determined that the block maxima series (BMS) data are more likely to have significant negative lag‐1 serial correlation. Peaks‐over‐threshold (POT) data are more likely to be serially correlated and this autocorrelation is more likely to be positive. It is determined that in the case of positively serially correlated AR(1) data, block bootstrap (BBS), Hamed and Rao (1998), variance correction (VCCF1), Yue and Wang (2004), variance correction (VCCF2), and sieve bootstrap (SBS) are the most robust. Alternatively, in the case of negative AR(1) autocorrelation, the corrected trend‐free prewhitening approach (CTFPW), modified trend‐free prewhitening (MTFPW), bias corrected prewhitening (BCPW), and VCCF1 are recommended. In the presence of higher order dependence structures, VCCF1 (with all significant lags included) and VCCF2 (with all lags included) should be applied cautiously. Lastly, an assessment of the causality of the serial correlation is provided." @default.
- W3006468863 created "2020-02-24" @default.
- W3006468863 creator A5004427020 @default.
- W3006468863 creator A5016727924 @default.
- W3006468863 creator A5045899607 @default.
- W3006468863 creator A5067464919 @default.
- W3006468863 date "2021-04-01" @default.
- W3006468863 modified "2023-10-13" @default.
- W3006468863 title "Trend Detection in the Presence of Positive and Negative Serial Correlation: A Comparison of Block Maxima and Peaks‐Over‐threshold Data" @default.
- W3006468863 cites W1564105742 @default.
- W3006468863 cites W1587734026 @default.
- W3006468863 cites W1600116906 @default.
- W3006468863 cites W1649419507 @default.
- W3006468863 cites W1650177443 @default.
- W3006468863 cites W1965802851 @default.
- W3006468863 cites W1973609976 @default.
- W3006468863 cites W1976374327 @default.
- W3006468863 cites W1976730168 @default.
- W3006468863 cites W1978465306 @default.
- W3006468863 cites W1990957165 @default.
- W3006468863 cites W2005751867 @default.
- W3006468863 cites W2007807012 @default.
- W3006468863 cites W2008602827 @default.
- W3006468863 cites W2012562749 @default.
- W3006468863 cites W2016769957 @default.
- W3006468863 cites W2018314333 @default.
- W3006468863 cites W2018764772 @default.
- W3006468863 cites W2019327179 @default.
- W3006468863 cites W2021760340 @default.
- W3006468863 cites W2027364672 @default.
- W3006468863 cites W2029298070 @default.
- W3006468863 cites W2036179143 @default.
- W3006468863 cites W2040612617 @default.
- W3006468863 cites W2044192590 @default.
- W3006468863 cites W2052708124 @default.
- W3006468863 cites W2053605206 @default.
- W3006468863 cites W2062575461 @default.
- W3006468863 cites W2064515348 @default.
- W3006468863 cites W2065294164 @default.
- W3006468863 cites W2068480436 @default.
- W3006468863 cites W2069846278 @default.
- W3006468863 cites W2070337735 @default.
- W3006468863 cites W2071446924 @default.
- W3006468863 cites W2074786060 @default.
- W3006468863 cites W2077690389 @default.
- W3006468863 cites W2082318860 @default.
- W3006468863 cites W2082608203 @default.
- W3006468863 cites W2083376263 @default.
- W3006468863 cites W2090968725 @default.
- W3006468863 cites W2094003226 @default.
- W3006468863 cites W2120733984 @default.
- W3006468863 cites W2129161539 @default.
- W3006468863 cites W2130359914 @default.
- W3006468863 cites W2130895856 @default.
- W3006468863 cites W2137595065 @default.
- W3006468863 cites W2142635246 @default.
- W3006468863 cites W2155802078 @default.
- W3006468863 cites W2318680928 @default.
- W3006468863 cites W2512370430 @default.
- W3006468863 cites W2796034401 @default.
- W3006468863 cites W2796331854 @default.
- W3006468863 cites W2801803914 @default.
- W3006468863 cites W3105105114 @default.
- W3006468863 cites W853192485 @default.
- W3006468863 doi "https://doi.org/10.1029/2020wr028886" @default.
- W3006468863 hasPublicationYear "2021" @default.
- W3006468863 type Work @default.
- W3006468863 sameAs 3006468863 @default.
- W3006468863 citedByCount "2" @default.
- W3006468863 countsByYear W30064688632021 @default.
- W3006468863 countsByYear W30064688632022 @default.
- W3006468863 countsByYear W30064688632023 @default.
- W3006468863 crossrefType "journal-article" @default.
- W3006468863 hasAuthorship W3006468863A5004427020 @default.
- W3006468863 hasAuthorship W3006468863A5016727924 @default.
- W3006468863 hasAuthorship W3006468863A5045899607 @default.
- W3006468863 hasAuthorship W3006468863A5067464919 @default.
- W3006468863 hasConcept C102366305 @default.
- W3006468863 hasConcept C105795698 @default.
- W3006468863 hasConcept C117220453 @default.
- W3006468863 hasConcept C142362112 @default.
- W3006468863 hasConcept C143724316 @default.
- W3006468863 hasConcept C149782125 @default.
- W3006468863 hasConcept C151730666 @default.
- W3006468863 hasConcept C2524010 @default.
- W3006468863 hasConcept C31258907 @default.
- W3006468863 hasConcept C33923547 @default.
- W3006468863 hasConcept C41008148 @default.
- W3006468863 hasConcept C52119013 @default.
- W3006468863 hasConcept C5297727 @default.
- W3006468863 hasConcept C554144382 @default.
- W3006468863 hasConcept C75778745 @default.
- W3006468863 hasConcept C86803240 @default.
- W3006468863 hasConcept C91528185 @default.
- W3006468863 hasConceptScore W3006468863C102366305 @default.
- W3006468863 hasConceptScore W3006468863C105795698 @default.
- W3006468863 hasConceptScore W3006468863C117220453 @default.
- W3006468863 hasConceptScore W3006468863C142362112 @default.
- W3006468863 hasConceptScore W3006468863C143724316 @default.
- W3006468863 hasConceptScore W3006468863C149782125 @default.