Matches in SemOpenAlex for { <https://semopenalex.org/work/W3006487170> ?p ?o ?g. }
- W3006487170 endingPage "6169" @default.
- W3006487170 startingPage "6160" @default.
- W3006487170 abstract "This paper proposes a semi-sequential probabilistic model (SSP) that applies an additional short term memory to enhance the performance of the probabilistic indoor localization. The conventional probabilistic methods normally treat the locations in the database indiscriminately. In contrast, SSP leverages the information of the previous position to determine the probable location since the user's speed in an indoor environment is bounded and locations near the previous one have higher probability than the other locations. Although the SSP utilizes the previous location information, it does not require the exact moving speed and direction of the user. On-site experiments using the received signal strength indicator (RSSI) and channel state information (CSI) fingerprints for localization demonstrate that SSP reduces the maximum error and boosts the performance of existing probabilistic approaches by 25% - 30%." @default.
- W3006487170 created "2020-02-24" @default.
- W3006487170 creator A5009705432 @default.
- W3006487170 creator A5049362473 @default.
- W3006487170 creator A5068612515 @default.
- W3006487170 creator A5079337204 @default.
- W3006487170 creator A5085240055 @default.
- W3006487170 creator A5089289729 @default.
- W3006487170 date "2020-06-01" @default.
- W3006487170 modified "2023-10-18" @default.
- W3006487170 title "Semi-Sequential Probabilistic Model for Indoor Localization Enhancement" @default.
- W3006487170 cites W1608826770 @default.
- W3006487170 cites W1981373725 @default.
- W3006487170 cites W2007146523 @default.
- W3006487170 cites W2016748032 @default.
- W3006487170 cites W2051376734 @default.
- W3006487170 cites W2054799039 @default.
- W3006487170 cites W2063817599 @default.
- W3006487170 cites W2089695767 @default.
- W3006487170 cites W2090702298 @default.
- W3006487170 cites W2115068461 @default.
- W3006487170 cites W2117081152 @default.
- W3006487170 cites W2118099695 @default.
- W3006487170 cites W2128190945 @default.
- W3006487170 cites W2143095760 @default.
- W3006487170 cites W2144723957 @default.
- W3006487170 cites W2145323322 @default.
- W3006487170 cites W2152506275 @default.
- W3006487170 cites W2169036624 @default.
- W3006487170 cites W2170102584 @default.
- W3006487170 cites W2265608995 @default.
- W3006487170 cites W2278572312 @default.
- W3006487170 cites W2316879520 @default.
- W3006487170 cites W2326347197 @default.
- W3006487170 cites W2327645608 @default.
- W3006487170 cites W2342827161 @default.
- W3006487170 cites W2511670370 @default.
- W3006487170 cites W2599936006 @default.
- W3006487170 cites W2600069438 @default.
- W3006487170 cites W2743104312 @default.
- W3006487170 cites W2744660192 @default.
- W3006487170 cites W2753866421 @default.
- W3006487170 cites W2891224819 @default.
- W3006487170 cites W2898051988 @default.
- W3006487170 cites W2964029185 @default.
- W3006487170 cites W2972355358 @default.
- W3006487170 cites W4237817155 @default.
- W3006487170 doi "https://doi.org/10.1109/jsen.2020.2972850" @default.
- W3006487170 hasPublicationYear "2020" @default.
- W3006487170 type Work @default.
- W3006487170 sameAs 3006487170 @default.
- W3006487170 citedByCount "9" @default.
- W3006487170 countsByYear W30064871702020 @default.
- W3006487170 countsByYear W30064871702021 @default.
- W3006487170 countsByYear W30064871702022 @default.
- W3006487170 countsByYear W30064871702023 @default.
- W3006487170 crossrefType "journal-article" @default.
- W3006487170 hasAuthorship W3006487170A5009705432 @default.
- W3006487170 hasAuthorship W3006487170A5049362473 @default.
- W3006487170 hasAuthorship W3006487170A5068612515 @default.
- W3006487170 hasAuthorship W3006487170A5079337204 @default.
- W3006487170 hasAuthorship W3006487170A5085240055 @default.
- W3006487170 hasAuthorship W3006487170A5089289729 @default.
- W3006487170 hasBestOaLocation W30064871702 @default.
- W3006487170 hasConcept C10138342 @default.
- W3006487170 hasConcept C114289077 @default.
- W3006487170 hasConcept C127162648 @default.
- W3006487170 hasConcept C148063708 @default.
- W3006487170 hasConcept C154945302 @default.
- W3006487170 hasConcept C162324750 @default.
- W3006487170 hasConcept C176808163 @default.
- W3006487170 hasConcept C198082294 @default.
- W3006487170 hasConcept C24404364 @default.
- W3006487170 hasConcept C24590314 @default.
- W3006487170 hasConcept C31258907 @default.
- W3006487170 hasConcept C41008148 @default.
- W3006487170 hasConcept C49937458 @default.
- W3006487170 hasConcept C555944384 @default.
- W3006487170 hasConcept C60782215 @default.
- W3006487170 hasConcept C76155785 @default.
- W3006487170 hasConcept C79403827 @default.
- W3006487170 hasConceptScore W3006487170C10138342 @default.
- W3006487170 hasConceptScore W3006487170C114289077 @default.
- W3006487170 hasConceptScore W3006487170C127162648 @default.
- W3006487170 hasConceptScore W3006487170C148063708 @default.
- W3006487170 hasConceptScore W3006487170C154945302 @default.
- W3006487170 hasConceptScore W3006487170C162324750 @default.
- W3006487170 hasConceptScore W3006487170C176808163 @default.
- W3006487170 hasConceptScore W3006487170C198082294 @default.
- W3006487170 hasConceptScore W3006487170C24404364 @default.
- W3006487170 hasConceptScore W3006487170C24590314 @default.
- W3006487170 hasConceptScore W3006487170C31258907 @default.
- W3006487170 hasConceptScore W3006487170C41008148 @default.
- W3006487170 hasConceptScore W3006487170C49937458 @default.
- W3006487170 hasConceptScore W3006487170C555944384 @default.
- W3006487170 hasConceptScore W3006487170C60782215 @default.
- W3006487170 hasConceptScore W3006487170C76155785 @default.
- W3006487170 hasConceptScore W3006487170C79403827 @default.