Matches in SemOpenAlex for { <https://semopenalex.org/work/W3006500839> ?p ?o ?g. }
- W3006500839 endingPage "e8580" @default.
- W3006500839 startingPage "e8580" @default.
- W3006500839 abstract "Within the global endeavour of improving population health, one major challenge is the identification and integration of medical knowledge spread through several information sources. The creation of a comprehensive dataset of diseases and their clinical manifestations based on information from public sources is an interesting approach that allows one not only to complement and merge medical knowledge but also to increase it and thereby to interconnect existing data and analyse and relate diseases to each other. In this paper, we present DISNET (http://disnet.ctb.upm.es/), a web-based system designed to periodically extract the knowledge from signs and symptoms retrieved from medical databases, and to enable the creation of customisable disease networks.We here present the main features of the DISNET system. We describe how information on diseases and their phenotypic manifestations is extracted from Wikipedia and PubMed websites; specifically, texts from these sources are processed through a combination of text mining and natural language processing techniques.We further present the validation of our system on Wikipedia and PubMed texts, obtaining the relevant accuracy. The final output includes the creation of a comprehensive symptoms-disease dataset, shared (free access) through the system's API. We finally describe, with some simple use cases, how a user can interact with it and extract information that could be used for subsequent analyses.DISNET allows retrieving knowledge about the signs, symptoms and diagnostic tests associated with a disease. It is not limited to a specific category (all the categories that the selected sources of information offer us) and clinical diagnosis terms. It further allows to track the evolution of those terms through time, being thus an opportunity to analyse and observe the progress of human knowledge on diseases. We further discussed the validation of the system, suggesting that it is good enough to be used to extract diseases and diagnostically-relevant terms. At the same time, the evaluation also revealed that improvements could be introduced to enhance the system's reliability." @default.
- W3006500839 created "2020-02-24" @default.
- W3006500839 creator A5007636819 @default.
- W3006500839 creator A5031146559 @default.
- W3006500839 creator A5039485265 @default.
- W3006500839 creator A5040076093 @default.
- W3006500839 creator A5043208031 @default.
- W3006500839 creator A5069508933 @default.
- W3006500839 date "2020-02-17" @default.
- W3006500839 modified "2023-10-06" @default.
- W3006500839 title "DISNET: a framework for extracting phenotypic disease information from public sources" @default.
- W3006500839 cites W1550258693 @default.
- W3006500839 cites W1605388339 @default.
- W3006500839 cites W1607026529 @default.
- W3006500839 cites W1873831586 @default.
- W3006500839 cites W1894267660 @default.
- W3006500839 cites W1964716329 @default.
- W3006500839 cites W1985849948 @default.
- W3006500839 cites W2005132321 @default.
- W3006500839 cites W2041073071 @default.
- W3006500839 cites W2043274355 @default.
- W3006500839 cites W2045791858 @default.
- W3006500839 cites W2046331364 @default.
- W3006500839 cites W2053039860 @default.
- W3006500839 cites W2059398918 @default.
- W3006500839 cites W2062533676 @default.
- W3006500839 cites W2079239760 @default.
- W3006500839 cites W2083045667 @default.
- W3006500839 cites W2092123736 @default.
- W3006500839 cites W2109434038 @default.
- W3006500839 cites W2119140405 @default.
- W3006500839 cites W2124563368 @default.
- W3006500839 cites W2125118217 @default.
- W3006500839 cites W2133152913 @default.
- W3006500839 cites W2136410628 @default.
- W3006500839 cites W2138974722 @default.
- W3006500839 cites W2142407957 @default.
- W3006500839 cites W2142854083 @default.
- W3006500839 cites W2145922075 @default.
- W3006500839 cites W2146089916 @default.
- W3006500839 cites W2148487672 @default.
- W3006500839 cites W2148499186 @default.
- W3006500839 cites W2152798993 @default.
- W3006500839 cites W2154654747 @default.
- W3006500839 cites W2156710117 @default.
- W3006500839 cites W2158418435 @default.
- W3006500839 cites W2158878319 @default.
- W3006500839 cites W2159092541 @default.
- W3006500839 cites W2159482845 @default.
- W3006500839 cites W2159583324 @default.
- W3006500839 cites W2244718251 @default.
- W3006500839 cites W2338565750 @default.
- W3006500839 cites W2344539657 @default.
- W3006500839 cites W2475306573 @default.
- W3006500839 cites W2512727383 @default.
- W3006500839 cites W2520209225 @default.
- W3006500839 cites W2534506726 @default.
- W3006500839 cites W2537679995 @default.
- W3006500839 cites W2540718864 @default.
- W3006500839 cites W2557385283 @default.
- W3006500839 cites W2605068739 @default.
- W3006500839 cites W2607793236 @default.
- W3006500839 cites W2747925647 @default.
- W3006500839 cites W2752070947 @default.
- W3006500839 cites W2754214987 @default.
- W3006500839 cites W2762853387 @default.
- W3006500839 cites W2767604178 @default.
- W3006500839 cites W2772399185 @default.
- W3006500839 cites W2782896657 @default.
- W3006500839 cites W2783743277 @default.
- W3006500839 cites W2786693834 @default.
- W3006500839 cites W2787171079 @default.
- W3006500839 cites W2806287121 @default.
- W3006500839 cites W2808935632 @default.
- W3006500839 cites W2811188240 @default.
- W3006500839 cites W2883671141 @default.
- W3006500839 cites W2887866346 @default.
- W3006500839 cites W2889414415 @default.
- W3006500839 cites W2899728356 @default.
- W3006500839 cites W2900569176 @default.
- W3006500839 cites W2909470726 @default.
- W3006500839 cites W2942160283 @default.
- W3006500839 cites W2944141861 @default.
- W3006500839 cites W2949854251 @default.
- W3006500839 cites W2956003075 @default.
- W3006500839 cites W3098901423 @default.
- W3006500839 cites W4294216483 @default.
- W3006500839 cites W2977393556 @default.
- W3006500839 doi "https://doi.org/10.7717/peerj.8580" @default.
- W3006500839 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7032061" @default.
- W3006500839 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32110491" @default.
- W3006500839 hasPublicationYear "2020" @default.
- W3006500839 type Work @default.
- W3006500839 sameAs 3006500839 @default.
- W3006500839 citedByCount "24" @default.
- W3006500839 countsByYear W30065008392020 @default.
- W3006500839 countsByYear W30065008392021 @default.
- W3006500839 countsByYear W30065008392022 @default.