Matches in SemOpenAlex for { <https://semopenalex.org/work/W3006526713> ?p ?o ?g. }
- W3006526713 endingPage "356" @default.
- W3006526713 startingPage "356" @default.
- W3006526713 abstract "To compare the image quality of low-dose (LD) computed tomography (CT) obtained using a deep learning-based denoising algorithm (DLA) with LD CT images reconstructed with a filtered back projection (FBP) and advanced modeled iterative reconstruction (ADMIRE).One hundred routine-dose (RD) abdominal CT studies reconstructed using FBP were used to train the DLA. Simulated CT images were made at dose levels of 13%, 25%, and 50% of the RD (DLA-1, -2, and -3) and reconstructed using FBP. We trained DLAs using the simulated CT images as input data and the RD CT images as ground truth. To test the DLA, the American College of Radiology CT phantom was used together with 18 patients who underwent abdominal LD CT. LD CT images of the phantom and patients were processed using FBP, ADMIRE, and DLAs (LD-FBP, LD-ADMIRE, and LD-DLA images, respectively). To compare the image quality, we measured the noise power spectrum and modulation transfer function (MTF) of phantom images. For patient data, we measured the mean image noise and performed qualitative image analysis. We evaluated the presence of additional artifacts in the LD-DLA images.LD-DLAs achieved lower noise levels than LD-FBP and LD-ADMIRE for both phantom and patient data (all p < 0.001). LD-DLAs trained with a lower radiation dose showed less image noise. However, the MTFs of the LD-DLAs were lower than those of LD-ADMIRE and LD-FBP (all p < 0.001) and decreased with decreasing training image dose. In the qualitative image analysis, the overall image quality of LD-DLAs was best for DLA-3 (50% simulated radiation dose) and not significantly different from LD-ADMIRE. There were no additional artifacts in LD-DLA images.DLAs achieved less noise than FBP and ADMIRE in LD CT images, but did not maintain spatial resolution. The DLA trained with 50% simulated radiation dose showed the best overall image quality." @default.
- W3006526713 created "2020-02-24" @default.
- W3006526713 creator A5012644755 @default.
- W3006526713 creator A5017943773 @default.
- W3006526713 creator A5041716030 @default.
- W3006526713 creator A5042010713 @default.
- W3006526713 creator A5047906249 @default.
- W3006526713 creator A5051519072 @default.
- W3006526713 creator A5059471115 @default.
- W3006526713 creator A5086524522 @default.
- W3006526713 date "2020-01-01" @default.
- W3006526713 modified "2023-10-06" @default.
- W3006526713 title "Low-Dose Abdominal CT Using a Deep Learning-Based Denoising Algorithm: A Comparison with CT Reconstructed with Filtered Back Projection or Iterative Reconstruction Algorithm" @default.
- W3006526713 cites W1949839429 @default.
- W3006526713 cites W1975265909 @default.
- W3006526713 cites W1976833053 @default.
- W3006526713 cites W1988604645 @default.
- W3006526713 cites W2006663170 @default.
- W3006526713 cites W2068943123 @default.
- W3006526713 cites W2099078477 @default.
- W3006526713 cites W2112229769 @default.
- W3006526713 cites W2122546849 @default.
- W3006526713 cites W2130297910 @default.
- W3006526713 cites W2136172319 @default.
- W3006526713 cites W2138553139 @default.
- W3006526713 cites W2167403983 @default.
- W3006526713 cites W2169074549 @default.
- W3006526713 cites W2170260757 @default.
- W3006526713 cites W2171697262 @default.
- W3006526713 cites W2229940785 @default.
- W3006526713 cites W2313896289 @default.
- W3006526713 cites W2570202822 @default.
- W3006526713 cites W2584483805 @default.
- W3006526713 cites W2795777276 @default.
- W3006526713 cites W3104324122 @default.
- W3006526713 doi "https://doi.org/10.3348/kjr.2019.0413" @default.
- W3006526713 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7039719" @default.
- W3006526713 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32090528" @default.
- W3006526713 hasPublicationYear "2020" @default.
- W3006526713 type Work @default.
- W3006526713 sameAs 3006526713 @default.
- W3006526713 citedByCount "44" @default.
- W3006526713 countsByYear W30065267132020 @default.
- W3006526713 countsByYear W30065267132021 @default.
- W3006526713 countsByYear W30065267132022 @default.
- W3006526713 countsByYear W30065267132023 @default.
- W3006526713 crossrefType "journal-article" @default.
- W3006526713 hasAuthorship W3006526713A5012644755 @default.
- W3006526713 hasAuthorship W3006526713A5017943773 @default.
- W3006526713 hasAuthorship W3006526713A5041716030 @default.
- W3006526713 hasAuthorship W3006526713A5042010713 @default.
- W3006526713 hasAuthorship W3006526713A5047906249 @default.
- W3006526713 hasAuthorship W3006526713A5051519072 @default.
- W3006526713 hasAuthorship W3006526713A5059471115 @default.
- W3006526713 hasAuthorship W3006526713A5086524522 @default.
- W3006526713 hasBestOaLocation W30065267132 @default.
- W3006526713 hasConcept C104293457 @default.
- W3006526713 hasConcept C11413529 @default.
- W3006526713 hasConcept C115961682 @default.
- W3006526713 hasConcept C126838900 @default.
- W3006526713 hasConcept C141379421 @default.
- W3006526713 hasConcept C154945302 @default.
- W3006526713 hasConcept C197231052 @default.
- W3006526713 hasConcept C2779898584 @default.
- W3006526713 hasConcept C2989005 @default.
- W3006526713 hasConcept C2992612897 @default.
- W3006526713 hasConcept C35772409 @default.
- W3006526713 hasConcept C41008148 @default.
- W3006526713 hasConcept C55020928 @default.
- W3006526713 hasConcept C71924100 @default.
- W3006526713 hasConcept C99498987 @default.
- W3006526713 hasConceptScore W3006526713C104293457 @default.
- W3006526713 hasConceptScore W3006526713C11413529 @default.
- W3006526713 hasConceptScore W3006526713C115961682 @default.
- W3006526713 hasConceptScore W3006526713C126838900 @default.
- W3006526713 hasConceptScore W3006526713C141379421 @default.
- W3006526713 hasConceptScore W3006526713C154945302 @default.
- W3006526713 hasConceptScore W3006526713C197231052 @default.
- W3006526713 hasConceptScore W3006526713C2779898584 @default.
- W3006526713 hasConceptScore W3006526713C2989005 @default.
- W3006526713 hasConceptScore W3006526713C2992612897 @default.
- W3006526713 hasConceptScore W3006526713C35772409 @default.
- W3006526713 hasConceptScore W3006526713C41008148 @default.
- W3006526713 hasConceptScore W3006526713C55020928 @default.
- W3006526713 hasConceptScore W3006526713C71924100 @default.
- W3006526713 hasConceptScore W3006526713C99498987 @default.
- W3006526713 hasFunder F4320322120 @default.
- W3006526713 hasFunder F4320324161 @default.
- W3006526713 hasIssue "3" @default.
- W3006526713 hasLocation W30065267131 @default.
- W3006526713 hasLocation W30065267132 @default.
- W3006526713 hasLocation W30065267133 @default.
- W3006526713 hasLocation W30065267134 @default.
- W3006526713 hasOpenAccess W3006526713 @default.
- W3006526713 hasPrimaryLocation W30065267131 @default.
- W3006526713 hasRelatedWork W2011797925 @default.
- W3006526713 hasRelatedWork W2096364402 @default.
- W3006526713 hasRelatedWork W2105162923 @default.