Matches in SemOpenAlex for { <https://semopenalex.org/work/W3006533904> ?p ?o ?g. }
- W3006533904 endingPage "1660" @default.
- W3006533904 startingPage "1648" @default.
- W3006533904 abstract "Purpose Subjective quality assessment of displayed magnetic resonance (MR) images plays a key role in diagnosis and the resultant treatment. Therefore, this study aims to introduce a new no‐reference (NR) image quality assessment (IQA) method for the objective, automatic evaluation of MR images and compare its judgments with those of similar techniques. Methods A novel NR‐IQA method was developed. The method uses a sequence of scaled images filtered to enhance high‐frequency components and preserve low‐frequency parts. Since the human visual system (HVS) is sensitive to local image variations and local features often mimic the attraction of the HVS to high‐frequency image regions, they were detected in the filtered images and described. Then, the statistics of obtained descriptors were used to build a quality model via the Support Vector Regression method. Results The method was compared with 21 state‐of‐the‐art techniques for NR‐IQA on a new dataset of 70 distorted MR images assessed by 31 experienced radiologists, using typical evaluation criteria for the comparison of NR measures. The introduced method significantly outperforms the compared approaches, in terms of the correlation with human judgments. Conclusions It is demonstrated that the presented NR‐IQA method for the assessment of MR images is superior to the state‐of‐the‐art NR techniques. The method would be beneficial for a wide range of image processing applications, assessing their outputs and affecting the directions of their development." @default.
- W3006533904 created "2020-02-24" @default.
- W3006533904 creator A5016614829 @default.
- W3006533904 creator A5042696358 @default.
- W3006533904 creator A5087565712 @default.
- W3006533904 date "2020-02-12" @default.
- W3006533904 modified "2023-10-05" @default.
- W3006533904 title "No‐reference image quality assessment of magnetic resonance images with high‐boost filtering and local features" @default.
- W3006533904 cites W1532362218 @default.
- W3006533904 cites W1596960200 @default.
- W3006533904 cites W1973364828 @default.
- W3006533904 cites W1975879668 @default.
- W3006533904 cites W1977246677 @default.
- W3006533904 cites W1977725648 @default.
- W3006533904 cites W1982471090 @default.
- W3006533904 cites W2003271614 @default.
- W3006533904 cites W2010166335 @default.
- W3006533904 cites W2014547837 @default.
- W3006533904 cites W2023200581 @default.
- W3006533904 cites W2043543344 @default.
- W3006533904 cites W2056775112 @default.
- W3006533904 cites W2057224480 @default.
- W3006533904 cites W2063360098 @default.
- W3006533904 cites W2092062478 @default.
- W3006533904 cites W2108353674 @default.
- W3006533904 cites W2129644086 @default.
- W3006533904 cites W2131752914 @default.
- W3006533904 cites W2140804420 @default.
- W3006533904 cites W2142884912 @default.
- W3006533904 cites W2153635508 @default.
- W3006533904 cites W2162692770 @default.
- W3006533904 cites W2162915697 @default.
- W3006533904 cites W2171125155 @default.
- W3006533904 cites W2296030939 @default.
- W3006533904 cites W2303076655 @default.
- W3006533904 cites W2460851640 @default.
- W3006533904 cites W2473697052 @default.
- W3006533904 cites W2509409836 @default.
- W3006533904 cites W2587441293 @default.
- W3006533904 cites W2592808879 @default.
- W3006533904 cites W2604388535 @default.
- W3006533904 cites W2606229973 @default.
- W3006533904 cites W2734603456 @default.
- W3006533904 cites W2754887662 @default.
- W3006533904 cites W2758359435 @default.
- W3006533904 cites W2761128463 @default.
- W3006533904 cites W2768340063 @default.
- W3006533904 cites W2769830725 @default.
- W3006533904 cites W2777280533 @default.
- W3006533904 cites W2789357782 @default.
- W3006533904 cites W2793324219 @default.
- W3006533904 cites W2804263814 @default.
- W3006533904 cites W2807217564 @default.
- W3006533904 cites W2883762431 @default.
- W3006533904 cites W2888360040 @default.
- W3006533904 cites W2890899380 @default.
- W3006533904 cites W2901763875 @default.
- W3006533904 cites W2909303017 @default.
- W3006533904 cites W2910112881 @default.
- W3006533904 cites W2910524170 @default.
- W3006533904 cites W2911306796 @default.
- W3006533904 cites W2913334837 @default.
- W3006533904 cites W2945147429 @default.
- W3006533904 cites W2946468525 @default.
- W3006533904 cites W2950120067 @default.
- W3006533904 cites W2950318887 @default.
- W3006533904 cites W2963325369 @default.
- W3006533904 cites W2963541822 @default.
- W3006533904 cites W2975107135 @default.
- W3006533904 cites W3098560717 @default.
- W3006533904 cites W3100498948 @default.
- W3006533904 doi "https://doi.org/10.1002/mrm.28201" @default.
- W3006533904 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32052485" @default.
- W3006533904 hasPublicationYear "2020" @default.
- W3006533904 type Work @default.
- W3006533904 sameAs 3006533904 @default.
- W3006533904 citedByCount "17" @default.
- W3006533904 countsByYear W30065339042020 @default.
- W3006533904 countsByYear W30065339042021 @default.
- W3006533904 countsByYear W30065339042022 @default.
- W3006533904 countsByYear W30065339042023 @default.
- W3006533904 crossrefType "journal-article" @default.
- W3006533904 hasAuthorship W3006533904A5016614829 @default.
- W3006533904 hasAuthorship W3006533904A5042696358 @default.
- W3006533904 hasAuthorship W3006533904A5087565712 @default.
- W3006533904 hasConcept C111472728 @default.
- W3006533904 hasConcept C115961682 @default.
- W3006533904 hasConcept C12267149 @default.
- W3006533904 hasConcept C126838900 @default.
- W3006533904 hasConcept C138885662 @default.
- W3006533904 hasConcept C143409427 @default.
- W3006533904 hasConcept C153180895 @default.
- W3006533904 hasConcept C154945302 @default.
- W3006533904 hasConcept C160086991 @default.
- W3006533904 hasConcept C2779530757 @default.
- W3006533904 hasConcept C31972630 @default.
- W3006533904 hasConcept C41008148 @default.
- W3006533904 hasConcept C55020928 @default.