Matches in SemOpenAlex for { <https://semopenalex.org/work/W3006560346> ?p ?o ?g. }
- W3006560346 endingPage "2597" @default.
- W3006560346 startingPage "2587" @default.
- W3006560346 abstract "Vibration signals under the same health state often have large differences due to changes in operating conditions. Likewise, the differences among vibration signals under different health states can be small under some operating conditions. Traditional deep learning methods apply fixed nonlinear transformations to all the input signals, which have a negative impact on the discriminative feature learning ability, i.e., projecting the intraclass signals into the same region and the interclass signals into distant regions. Aiming at this issue, this article develops a new activation function, i.e., adaptively parametric rectifier linear units, and inserts the activation function into deep residual networks to improve the feature learning ability, so that each input signal is trained to have its own set of nonlinear transformations. To be specific, a subnetwork is inserted as an embedded module to learn slopes to be used in the nonlinear transformation. The slopes are dependent on the input signal, and thereby the developed method has more flexible nonlinear transformations than the traditional deep learning methods. Finally, the improved performance of the developed method in learning discriminative features has been validated through fault diagnosis applications." @default.
- W3006560346 created "2020-02-24" @default.
- W3006560346 creator A5002417986 @default.
- W3006560346 creator A5010206131 @default.
- W3006560346 creator A5031306802 @default.
- W3006560346 creator A5034232115 @default.
- W3006560346 creator A5069236107 @default.
- W3006560346 creator A5080224606 @default.
- W3006560346 date "2021-03-01" @default.
- W3006560346 modified "2023-10-15" @default.
- W3006560346 title "Deep Residual Networks With Adaptively Parametric Rectifier Linear Units for Fault Diagnosis" @default.
- W3006560346 cites W1677182931 @default.
- W3006560346 cites W2019055402 @default.
- W3006560346 cites W2057802213 @default.
- W3006560346 cites W2065554891 @default.
- W3006560346 cites W2194775991 @default.
- W3006560346 cites W2302255633 @default.
- W3006560346 cites W2461729787 @default.
- W3006560346 cites W2590288147 @default.
- W3006560346 cites W2595657631 @default.
- W3006560346 cites W2604523962 @default.
- W3006560346 cites W2734669076 @default.
- W3006560346 cites W2752782242 @default.
- W3006560346 cites W2754767460 @default.
- W3006560346 cites W2762355244 @default.
- W3006560346 cites W2765284480 @default.
- W3006560346 cites W2768753204 @default.
- W3006560346 cites W2789811186 @default.
- W3006560346 cites W2791694051 @default.
- W3006560346 cites W2794760173 @default.
- W3006560346 cites W2794869810 @default.
- W3006560346 cites W2796787857 @default.
- W3006560346 cites W2808496542 @default.
- W3006560346 cites W2810292802 @default.
- W3006560346 cites W2827159893 @default.
- W3006560346 cites W2883254659 @default.
- W3006560346 cites W2884552531 @default.
- W3006560346 cites W2885674520 @default.
- W3006560346 cites W2888337213 @default.
- W3006560346 cites W2891236746 @default.
- W3006560346 cites W2891319189 @default.
- W3006560346 cites W2893464634 @default.
- W3006560346 cites W2895955625 @default.
- W3006560346 cites W2896451001 @default.
- W3006560346 cites W2898375427 @default.
- W3006560346 cites W2906578288 @default.
- W3006560346 cites W2907007702 @default.
- W3006560346 cites W2912538417 @default.
- W3006560346 cites W2912899860 @default.
- W3006560346 cites W2916091221 @default.
- W3006560346 cites W2917896152 @default.
- W3006560346 cites W2921717016 @default.
- W3006560346 cites W2939535241 @default.
- W3006560346 cites W2948539592 @default.
- W3006560346 cites W2977117446 @default.
- W3006560346 cites W2990308728 @default.
- W3006560346 doi "https://doi.org/10.1109/tie.2020.2972458" @default.
- W3006560346 hasPublicationYear "2021" @default.
- W3006560346 type Work @default.
- W3006560346 sameAs 3006560346 @default.
- W3006560346 citedByCount "101" @default.
- W3006560346 countsByYear W30065603462020 @default.
- W3006560346 countsByYear W30065603462021 @default.
- W3006560346 countsByYear W30065603462022 @default.
- W3006560346 countsByYear W30065603462023 @default.
- W3006560346 crossrefType "journal-article" @default.
- W3006560346 hasAuthorship W3006560346A5002417986 @default.
- W3006560346 hasAuthorship W3006560346A5010206131 @default.
- W3006560346 hasAuthorship W3006560346A5031306802 @default.
- W3006560346 hasAuthorship W3006560346A5034232115 @default.
- W3006560346 hasAuthorship W3006560346A5069236107 @default.
- W3006560346 hasAuthorship W3006560346A5080224606 @default.
- W3006560346 hasConcept C104317684 @default.
- W3006560346 hasConcept C105795698 @default.
- W3006560346 hasConcept C108583219 @default.
- W3006560346 hasConcept C11413529 @default.
- W3006560346 hasConcept C117251300 @default.
- W3006560346 hasConcept C119857082 @default.
- W3006560346 hasConcept C121332964 @default.
- W3006560346 hasConcept C127313418 @default.
- W3006560346 hasConcept C138885662 @default.
- W3006560346 hasConcept C147168706 @default.
- W3006560346 hasConcept C153180895 @default.
- W3006560346 hasConcept C154945302 @default.
- W3006560346 hasConcept C155512373 @default.
- W3006560346 hasConcept C158622935 @default.
- W3006560346 hasConcept C165205528 @default.
- W3006560346 hasConcept C175551986 @default.
- W3006560346 hasConcept C185592680 @default.
- W3006560346 hasConcept C199360897 @default.
- W3006560346 hasConcept C204241405 @default.
- W3006560346 hasConcept C2775924081 @default.
- W3006560346 hasConcept C2776401178 @default.
- W3006560346 hasConcept C2779843651 @default.
- W3006560346 hasConcept C33923547 @default.
- W3006560346 hasConcept C41008148 @default.
- W3006560346 hasConcept C41895202 @default.
- W3006560346 hasConcept C47446073 @default.