Matches in SemOpenAlex for { <https://semopenalex.org/work/W3006670125> ?p ?o ?g. }
- W3006670125 endingPage "2639" @default.
- W3006670125 startingPage "2629" @default.
- W3006670125 abstract "In this article, two novel deep learning methods are proposed for displacement estimation in ultrasound elastography (USE). Although convolutional neural networks (CNNs) have been very successful for displacement estimation in computer vision, they have been rarely used for USE. One of the main limitations is that the radio frequency (RF) ultrasound data, which is crucial for precise displacement estimation, has vastly different frequency characteristics compared with images in computer vision. Top-rank CNN methods used in computer vision applications are mostly based on a multilevel strategy, which estimates finer resolution based on coarser ones. This strategy does not work well for RF data due to its large high-frequency content. To mitigate the problem, we propose modified pyramid warping and cost volume network (MPWC-Net) and RFMPWC-Net, both based on PWC-Net, to exploit information in RF data by employing two different strategies. We obtained promising results using networks trained only on computer vision images. In the next step, we constructed a large ultrasound simulation database and proposed a new loss function to fine-tune the network to improve its performance. The proposed networks and well-known optical flow networks as well as state-of-the-art elastography methods are evaluated using simulation, phantom, and in vivo data. Our two proposed networks substantially outperform current deep learning methods in terms of contrast-to-noise ratio (CNR) and strain ratio (SR). Also, the proposed methods perform similar to the state-of-the-art elastography methods in terms of CNR and have better SR by substantially reducing the underestimation bias." @default.
- W3006670125 created "2020-02-24" @default.
- W3006670125 creator A5068012805 @default.
- W3006670125 creator A5077743201 @default.
- W3006670125 date "2020-12-01" @default.
- W3006670125 modified "2023-10-05" @default.
- W3006670125 title "Displacement Estimation in Ultrasound Elastography Using Pyramidal Convolutional Neural Network" @default.
- W3006670125 cites W1961632191 @default.
- W3006670125 cites W2015085190 @default.
- W3006670125 cites W2032141543 @default.
- W3006670125 cites W2098522461 @default.
- W3006670125 cites W2099826407 @default.
- W3006670125 cites W2102115196 @default.
- W3006670125 cites W2116612842 @default.
- W3006670125 cites W2121401384 @default.
- W3006670125 cites W2126868565 @default.
- W3006670125 cites W2131986555 @default.
- W3006670125 cites W2151032947 @default.
- W3006670125 cites W2166343165 @default.
- W3006670125 cites W2412782625 @default.
- W3006670125 cites W2548527721 @default.
- W3006670125 cites W2560474170 @default.
- W3006670125 cites W2595709438 @default.
- W3006670125 cites W2618530766 @default.
- W3006670125 cites W2646681762 @default.
- W3006670125 cites W2782558478 @default.
- W3006670125 cites W2792768252 @default.
- W3006670125 cites W2890939680 @default.
- W3006670125 cites W2899643870 @default.
- W3006670125 cites W2906779901 @default.
- W3006670125 cites W2908127752 @default.
- W3006670125 cites W2920878436 @default.
- W3006670125 cites W2921417375 @default.
- W3006670125 cites W2937473967 @default.
- W3006670125 cites W2942440950 @default.
- W3006670125 cites W2961935784 @default.
- W3006670125 cites W2963190374 @default.
- W3006670125 cites W2963782415 @default.
- W3006670125 cites W2987618304 @default.
- W3006670125 cites W3104373315 @default.
- W3006670125 cites W764651262 @default.
- W3006670125 doi "https://doi.org/10.1109/tuffc.2020.2973047" @default.
- W3006670125 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32070949" @default.
- W3006670125 hasPublicationYear "2020" @default.
- W3006670125 type Work @default.
- W3006670125 sameAs 3006670125 @default.
- W3006670125 citedByCount "49" @default.
- W3006670125 countsByYear W30066701252020 @default.
- W3006670125 countsByYear W30066701252021 @default.
- W3006670125 countsByYear W30066701252022 @default.
- W3006670125 countsByYear W30066701252023 @default.
- W3006670125 crossrefType "journal-article" @default.
- W3006670125 hasAuthorship W3006670125A5068012805 @default.
- W3006670125 hasAuthorship W3006670125A5077743201 @default.
- W3006670125 hasConcept C108583219 @default.
- W3006670125 hasConcept C121332964 @default.
- W3006670125 hasConcept C143753070 @default.
- W3006670125 hasConcept C153180895 @default.
- W3006670125 hasConcept C154945302 @default.
- W3006670125 hasConcept C24890656 @default.
- W3006670125 hasConcept C2777690781 @default.
- W3006670125 hasConcept C31972630 @default.
- W3006670125 hasConcept C41008148 @default.
- W3006670125 hasConcept C50644808 @default.
- W3006670125 hasConcept C74064498 @default.
- W3006670125 hasConcept C76155785 @default.
- W3006670125 hasConcept C81363708 @default.
- W3006670125 hasConceptScore W3006670125C108583219 @default.
- W3006670125 hasConceptScore W3006670125C121332964 @default.
- W3006670125 hasConceptScore W3006670125C143753070 @default.
- W3006670125 hasConceptScore W3006670125C153180895 @default.
- W3006670125 hasConceptScore W3006670125C154945302 @default.
- W3006670125 hasConceptScore W3006670125C24890656 @default.
- W3006670125 hasConceptScore W3006670125C2777690781 @default.
- W3006670125 hasConceptScore W3006670125C31972630 @default.
- W3006670125 hasConceptScore W3006670125C41008148 @default.
- W3006670125 hasConceptScore W3006670125C50644808 @default.
- W3006670125 hasConceptScore W3006670125C74064498 @default.
- W3006670125 hasConceptScore W3006670125C76155785 @default.
- W3006670125 hasConceptScore W3006670125C81363708 @default.
- W3006670125 hasFunder F4320334593 @default.
- W3006670125 hasIssue "12" @default.
- W3006670125 hasLocation W30066701251 @default.
- W3006670125 hasOpenAccess W3006670125 @default.
- W3006670125 hasPrimaryLocation W30066701251 @default.
- W3006670125 hasRelatedWork W2731899572 @default.
- W3006670125 hasRelatedWork W2999805992 @default.
- W3006670125 hasRelatedWork W3011074480 @default.
- W3006670125 hasRelatedWork W3116150086 @default.
- W3006670125 hasRelatedWork W3133861977 @default.
- W3006670125 hasRelatedWork W3192840557 @default.
- W3006670125 hasRelatedWork W4200173597 @default.
- W3006670125 hasRelatedWork W4291897433 @default.
- W3006670125 hasRelatedWork W4312417841 @default.
- W3006670125 hasRelatedWork W4321369474 @default.
- W3006670125 hasVolume "67" @default.
- W3006670125 isParatext "false" @default.
- W3006670125 isRetracted "false" @default.