Matches in SemOpenAlex for { <https://semopenalex.org/work/W3006793424> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W3006793424 abstract "Traffic noise is an irritating problem especially for residents near major transportation corridors. It’s in the interest of transportation agencies to check the noise level to develop measures to reduce noise if it exceeds the allowable threshold. This process requires measuring noise level along roadways nearby the residential areas. Alternatively, computer models can be used to study and analyse the noise level which save a lot of resources and enable transportation agencies to take countermeasures when planning new roadways near residential areas. The Federal Highway Traffic Noise Model (TNM) is a computer program that is used to analyse and model traffic noise. The vehicle speed, traffic volume and road geometry are used to predict noise propagation in open far-field environment and determine noise attenuation from noise barriers. In TNMv2.5, pavement and ground type is included but it does not account for noise propagation medium that is random and continuously evolving. In this paper, Federal Highway Administration’s (FHWA) TNMv2.5 was evaluated to determine the accuracy of this model in the State of Qatar. During noise measurement, traffic volume and terrain geometry were used to predict the noise levels by using TNMv2.5. The predicted noise levels were compared with the observed levels for checking the accuracy of this model for predicting the future noise levels of roadways. The predicted noise levels were compared with noise levels measured at 19 locations at nine sites throughout the State of Qatar. For typical pavements in Qatar, the TNMv2.5 is overpredicting approximately 2.3 dB for high traffic, whereas it is underpredicting on an average 1.9 dB for low traffic volume. Although the number of test locations is relatively small, it was still established that the results obtained by FHWA’s TNMv2.5 model were within the reasonable range of the observed noise levels for pavements in the State of Qatar. This demonstrated that the TNMv2.5 model was suitable for predicting noise level for pavements in Qatar." @default.
- W3006793424 created "2020-03-06" @default.
- W3006793424 creator A5021070077 @default.
- W3006793424 creator A5060451750 @default.
- W3006793424 creator A5072017995 @default.
- W3006793424 date "2020-01-01" @default.
- W3006793424 modified "2023-09-24" @default.
- W3006793424 title "Evaluation of Federal Highway Administration’s Traffic Noise Model for Pavements in Qatar" @default.
- W3006793424 cites W2035369837 @default.
- W3006793424 cites W2053414708 @default.
- W3006793424 cites W2476589870 @default.
- W3006793424 cites W2496563271 @default.
- W3006793424 doi "https://doi.org/10.1007/978-981-15-1193-6_16" @default.
- W3006793424 hasPublicationYear "2020" @default.
- W3006793424 type Work @default.
- W3006793424 sameAs 3006793424 @default.
- W3006793424 citedByCount "0" @default.
- W3006793424 crossrefType "book-chapter" @default.
- W3006793424 hasAuthorship W3006793424A5021070077 @default.
- W3006793424 hasAuthorship W3006793424A5060451750 @default.
- W3006793424 hasAuthorship W3006793424A5072017995 @default.
- W3006793424 hasConcept C106982986 @default.
- W3006793424 hasConcept C115961682 @default.
- W3006793424 hasConcept C116822448 @default.
- W3006793424 hasConcept C127413603 @default.
- W3006793424 hasConcept C154945302 @default.
- W3006793424 hasConcept C161840515 @default.
- W3006793424 hasConcept C163294075 @default.
- W3006793424 hasConcept C205649164 @default.
- W3006793424 hasConcept C22212356 @default.
- W3006793424 hasConcept C24992206 @default.
- W3006793424 hasConcept C2781353297 @default.
- W3006793424 hasConcept C29265498 @default.
- W3006793424 hasConcept C41008148 @default.
- W3006793424 hasConcept C58640448 @default.
- W3006793424 hasConcept C99498987 @default.
- W3006793424 hasConceptScore W3006793424C106982986 @default.
- W3006793424 hasConceptScore W3006793424C115961682 @default.
- W3006793424 hasConceptScore W3006793424C116822448 @default.
- W3006793424 hasConceptScore W3006793424C127413603 @default.
- W3006793424 hasConceptScore W3006793424C154945302 @default.
- W3006793424 hasConceptScore W3006793424C161840515 @default.
- W3006793424 hasConceptScore W3006793424C163294075 @default.
- W3006793424 hasConceptScore W3006793424C205649164 @default.
- W3006793424 hasConceptScore W3006793424C22212356 @default.
- W3006793424 hasConceptScore W3006793424C24992206 @default.
- W3006793424 hasConceptScore W3006793424C2781353297 @default.
- W3006793424 hasConceptScore W3006793424C29265498 @default.
- W3006793424 hasConceptScore W3006793424C41008148 @default.
- W3006793424 hasConceptScore W3006793424C58640448 @default.
- W3006793424 hasConceptScore W3006793424C99498987 @default.
- W3006793424 hasLocation W30067934241 @default.
- W3006793424 hasOpenAccess W3006793424 @default.
- W3006793424 hasPrimaryLocation W30067934241 @default.
- W3006793424 hasRelatedWork W12036998 @default.
- W3006793424 hasRelatedWork W12469711 @default.
- W3006793424 hasRelatedWork W12673639 @default.
- W3006793424 hasRelatedWork W12854089 @default.
- W3006793424 hasRelatedWork W3676424 @default.
- W3006793424 hasRelatedWork W4888704 @default.
- W3006793424 hasRelatedWork W5410325 @default.
- W3006793424 hasRelatedWork W6812148 @default.
- W3006793424 hasRelatedWork W930335 @default.
- W3006793424 hasRelatedWork W2600803 @default.
- W3006793424 isParatext "false" @default.
- W3006793424 isRetracted "false" @default.
- W3006793424 magId "3006793424" @default.
- W3006793424 workType "book-chapter" @default.