Matches in SemOpenAlex for { <https://semopenalex.org/work/W3006931760> ?p ?o ?g. }
- W3006931760 abstract "We examine applicability of the valence bond basis correlator product state ansatz, equivalent to the restricted Boltzmann machine quantum artificial neural network ansatz, and variational Monte Carlo method for direct optimization of excited energy states to study properties of strongly correlated and frustrated quantum systems. The energy eigenstates are found by stochastic minimization of the variational function for the energy eigenstates which allows direct optimization of particular energy state without knowledge of the lower energy states. This approach combined with numerous tensor network or artificial neural network ansatz wavefunctions then allows further insight into quantum phases and phase transitions in various strongly correlated models by considering properties of these systems beyond the ground state properties. Also, the method is in general applicable to any dimension and has no sign instability. An example that we consider is the square lattice J1-J2 antiferromagnetic Heisenberg model. The model is one of the most studied models in frustrated quantum magnetism since it is closely related to the disappearance of the antiferromagnetic order in the high-Tc superconducting materials and there is still no agreement about the properties of the system in the highly frustrated regime near J2/J1 = 0.5. For J1-J2 model we write the variational ansatz in terms of the two site correlators and in the valence bond basis and calculate lowest energy eigenstates in the highly frustrated regime near J2/J1 = 0.5 where the system has a paramagnetic phase. We find that our results are in good agreement with previously obtained results which confirms applicability of the method to study frustrated spin systems." @default.
- W3006931760 created "2020-03-06" @default.
- W3006931760 creator A5055562921 @default.
- W3006931760 creator A5071507705 @default.
- W3006931760 date "2020-08-03" @default.
- W3006931760 modified "2023-10-16" @default.
- W3006931760 title "Efficient neural-network based variational Monte Carlo scheme for direct optimization of excited energy states in frustrated quantum systems" @default.
- W3006931760 cites W1533761513 @default.
- W3006931760 cites W1543736766 @default.
- W3006931760 cites W1825525822 @default.
- W3006931760 cites W1890761313 @default.
- W3006931760 cites W1973663126 @default.
- W3006931760 cites W1974211391 @default.
- W3006931760 cites W1978538004 @default.
- W3006931760 cites W1983080619 @default.
- W3006931760 cites W1986120635 @default.
- W3006931760 cites W1987534460 @default.
- W3006931760 cites W1992479858 @default.
- W3006931760 cites W1994616650 @default.
- W3006931760 cites W1997930699 @default.
- W3006931760 cites W2000541921 @default.
- W3006931760 cites W2003666399 @default.
- W3006931760 cites W2007229344 @default.
- W3006931760 cites W2007695974 @default.
- W3006931760 cites W2008168160 @default.
- W3006931760 cites W2014478177 @default.
- W3006931760 cites W2015336133 @default.
- W3006931760 cites W2016536620 @default.
- W3006931760 cites W2019076346 @default.
- W3006931760 cites W2022162411 @default.
- W3006931760 cites W2022394733 @default.
- W3006931760 cites W2024060531 @default.
- W3006931760 cites W2026907619 @default.
- W3006931760 cites W2032706954 @default.
- W3006931760 cites W2037768897 @default.
- W3006931760 cites W2038195184 @default.
- W3006931760 cites W2038425631 @default.
- W3006931760 cites W2040048470 @default.
- W3006931760 cites W2042571150 @default.
- W3006931760 cites W2044498163 @default.
- W3006931760 cites W2045538510 @default.
- W3006931760 cites W2046114713 @default.
- W3006931760 cites W2053446571 @default.
- W3006931760 cites W2056755147 @default.
- W3006931760 cites W2061503517 @default.
- W3006931760 cites W2061541509 @default.
- W3006931760 cites W2063479625 @default.
- W3006931760 cites W2068976290 @default.
- W3006931760 cites W2070170903 @default.
- W3006931760 cites W2074833155 @default.
- W3006931760 cites W2078436527 @default.
- W3006931760 cites W2087026308 @default.
- W3006931760 cites W2089185452 @default.
- W3006931760 cites W2089925386 @default.
- W3006931760 cites W2091990339 @default.
- W3006931760 cites W2101618570 @default.
- W3006931760 cites W2122160419 @default.
- W3006931760 cites W2128855356 @default.
- W3006931760 cites W2147255455 @default.
- W3006931760 cites W2154219428 @default.
- W3006931760 cites W2259399741 @default.
- W3006931760 cites W2292843165 @default.
- W3006931760 cites W2340098224 @default.
- W3006931760 cites W2419175238 @default.
- W3006931760 cites W2582157661 @default.
- W3006931760 cites W2582761306 @default.
- W3006931760 cites W2738381299 @default.
- W3006931760 cites W2741169067 @default.
- W3006931760 cites W2763850513 @default.
- W3006931760 cites W2888927644 @default.
- W3006931760 cites W2898751575 @default.
- W3006931760 cites W2921586812 @default.
- W3006931760 cites W2962727034 @default.
- W3006931760 cites W2962928554 @default.
- W3006931760 cites W3037575279 @default.
- W3006931760 cites W3098594497 @default.
- W3006931760 cites W3098702792 @default.
- W3006931760 cites W3099497510 @default.
- W3006931760 cites W3099910066 @default.
- W3006931760 cites W3101214870 @default.
- W3006931760 cites W3101237158 @default.
- W3006931760 cites W3102038441 @default.
- W3006931760 cites W3102105265 @default.
- W3006931760 cites W3102900200 @default.
- W3006931760 cites W3106281456 @default.
- W3006931760 cites W4250463753 @default.
- W3006931760 doi "https://doi.org/10.1103/physrevb.102.085104" @default.
- W3006931760 hasPublicationYear "2020" @default.
- W3006931760 type Work @default.
- W3006931760 sameAs 3006931760 @default.
- W3006931760 citedByCount "2" @default.
- W3006931760 countsByYear W30069317602021 @default.
- W3006931760 crossrefType "journal-article" @default.
- W3006931760 hasAuthorship W3006931760A5055562921 @default.
- W3006931760 hasAuthorship W3006931760A5071507705 @default.
- W3006931760 hasBestOaLocation W30069317602 @default.
- W3006931760 hasConcept C105795698 @default.
- W3006931760 hasConcept C106074065 @default.
- W3006931760 hasConcept C113603373 @default.
- W3006931760 hasConcept C121332964 @default.