Matches in SemOpenAlex for { <https://semopenalex.org/work/W3006945411> ?p ?o ?g. }
- W3006945411 endingPage "1" @default.
- W3006945411 startingPage "1" @default.
- W3006945411 abstract "With the explosive increase of big data in industry and academic fields, it is necessary to apply large-scale data processing systems to analysis Big Data. Arguably, Spark is state of the art in large-scale data computing systems nowadays, due to its good properties including generality, fault tolerance, high performance of in-memory data processing, and scalability. Spark adopts a flexible Resident Distributed Dataset (RDD) programming model with a set of provided transformation and action operators whose operating functions can be customized by users according to their applications. It is originally positioned as a fast and general data processing system. A large body of research efforts have been made to make it more efficient (faster) and general by considering various circumstances since its introduction. In this survey, we aim to have a thorough review of various kinds of optimization techniques on the generality and performance improvement of Spark. We introduce Spark programming model and computing system, discuss the pros and cons of Spark, and have an investigation and classification of various solving techniques in the literature. Moreover, we also introduce various data management and processing systems, machine learning algorithms and applications supported by Spark. Finally, we make a discussion on the open issues and challenges for large-scale in-memory data processing with Spark." @default.
- W3006945411 created "2020-03-06" @default.
- W3006945411 creator A5010031092 @default.
- W3006945411 creator A5026498734 @default.
- W3006945411 creator A5036990231 @default.
- W3006945411 creator A5039946576 @default.
- W3006945411 creator A5055658279 @default.
- W3006945411 date "2020-01-01" @default.
- W3006945411 modified "2023-09-27" @default.
- W3006945411 title "A Survey on Spark Ecosystem: Big Data Processing Infrastructure, Machine Learning, and Applications" @default.
- W3006945411 cites W1868798185 @default.
- W3006945411 cites W1966668827 @default.
- W3006945411 cites W1966705109 @default.
- W3006945411 cites W1969299781 @default.
- W3006945411 cites W1976821017 @default.
- W3006945411 cites W1989017925 @default.
- W3006945411 cites W1993892970 @default.
- W3006945411 cites W2013455564 @default.
- W3006945411 cites W2024621423 @default.
- W3006945411 cites W2035168235 @default.
- W3006945411 cites W2038157364 @default.
- W3006945411 cites W2071704971 @default.
- W3006945411 cites W2071989194 @default.
- W3006945411 cites W2087946700 @default.
- W3006945411 cites W2098935637 @default.
- W3006945411 cites W2100830825 @default.
- W3006945411 cites W2102849319 @default.
- W3006945411 cites W2105947650 @default.
- W3006945411 cites W2106771621 @default.
- W3006945411 cites W2108157916 @default.
- W3006945411 cites W2108234281 @default.
- W3006945411 cites W2124744459 @default.
- W3006945411 cites W2125032792 @default.
- W3006945411 cites W2139072600 @default.
- W3006945411 cites W2141684031 @default.
- W3006945411 cites W2144461192 @default.
- W3006945411 cites W2147869723 @default.
- W3006945411 cites W2155893237 @default.
- W3006945411 cites W2170616854 @default.
- W3006945411 cites W2183195638 @default.
- W3006945411 cites W2207770721 @default.
- W3006945411 cites W2287498853 @default.
- W3006945411 cites W2320283508 @default.
- W3006945411 cites W2339488751 @default.
- W3006945411 cites W2384569204 @default.
- W3006945411 cites W2402380660 @default.
- W3006945411 cites W2409628138 @default.
- W3006945411 cites W2436120840 @default.
- W3006945411 cites W2443893970 @default.
- W3006945411 cites W2480903369 @default.
- W3006945411 cites W2485107572 @default.
- W3006945411 cites W2498111289 @default.
- W3006945411 cites W2516097068 @default.
- W3006945411 cites W2521140588 @default.
- W3006945411 cites W2547386789 @default.
- W3006945411 cites W2550585696 @default.
- W3006945411 cites W2606722458 @default.
- W3006945411 cites W2619024801 @default.
- W3006945411 cites W2735413012 @default.
- W3006945411 cites W2743230100 @default.
- W3006945411 cites W2743247456 @default.
- W3006945411 cites W2751596245 @default.
- W3006945411 cites W2769557912 @default.
- W3006945411 cites W2785314999 @default.
- W3006945411 cites W2798457757 @default.
- W3006945411 cites W2897711619 @default.
- W3006945411 cites W2943334384 @default.
- W3006945411 cites W2946707752 @default.
- W3006945411 cites W2955769069 @default.
- W3006945411 cites W2964097655 @default.
- W3006945411 cites W4249823756 @default.
- W3006945411 cites W4289389619 @default.
- W3006945411 cites W4365786623 @default.
- W3006945411 doi "https://doi.org/10.1109/tkde.2020.2975652" @default.
- W3006945411 hasPublicationYear "2020" @default.
- W3006945411 type Work @default.
- W3006945411 sameAs 3006945411 @default.
- W3006945411 citedByCount "20" @default.
- W3006945411 countsByYear W30069454112021 @default.
- W3006945411 countsByYear W30069454112022 @default.
- W3006945411 countsByYear W30069454112023 @default.
- W3006945411 crossrefType "journal-article" @default.
- W3006945411 hasAuthorship W3006945411A5010031092 @default.
- W3006945411 hasAuthorship W3006945411A5026498734 @default.
- W3006945411 hasAuthorship W3006945411A5036990231 @default.
- W3006945411 hasAuthorship W3006945411A5039946576 @default.
- W3006945411 hasAuthorship W3006945411A5055658279 @default.
- W3006945411 hasBestOaLocation W30069454112 @default.
- W3006945411 hasConcept C119857082 @default.
- W3006945411 hasConcept C120314980 @default.
- W3006945411 hasConcept C124101348 @default.
- W3006945411 hasConcept C138827492 @default.
- W3006945411 hasConcept C154945302 @default.
- W3006945411 hasConcept C15744967 @default.
- W3006945411 hasConcept C199360897 @default.
- W3006945411 hasConcept C2522767166 @default.
- W3006945411 hasConcept C2780767217 @default.
- W3006945411 hasConcept C2781215313 @default.