Matches in SemOpenAlex for { <https://semopenalex.org/work/W3007051837> ?p ?o ?g. }
- W3007051837 endingPage "370" @default.
- W3007051837 startingPage "358" @default.
- W3007051837 abstract "Type I collagen hydrogels are of high interest in tissue engineering. With the evolution of 3D bioprinting technologies, a high number of collagen-based scaffolds have been reported for the development of 3D cell cultures. A recent proposal was to mix collagen with silk fibroin derived from Bombyx mori silkworm. Nevertheless, due to the difficulties in the preparation and the characteristics of the protein, several problems such as phase separation and collagen denaturation appear during the procedure. Therefore, the common solution is to diminish the concentration of collagen although in that way the most biologically relevant component is reduced. In this study, we present a new, simple, and effective method to develop a collagen-silk hybrid hydrogel with high collagen concentration and with increased stiffness approaching that of natural tissues, which could be of high interest for the development of cardiac patches for myocardial regeneration and for preconditioning of mesenchymal stem cells (MSCs) to improve their therapeutic potential. Sericin in the silk was preserved by using a physical solubilizing procedure that results in a preserved fibrous structure of type I collagen, as shown by ultrastructural imaging. The macro- and micromechanical properties of the hybrid hydrogels measured by tensile stretch and atomic force microscopy, respectively, showed a more than twofold stiffening than the collagen-only hydrogels. Rheological measurements showed improved printability properties for the developed biomaterial. The suitability of the hydrogels for 3D cell culture was assessed by 3D bioprinting bone marrow-derived MSCs cultured within the scaffolds. The result was a biomaterial with improved printability characteristics that better resembled the mechanical properties of natural soft tissues while preserving biocompatibility owing to the high concentration of collagen. Impact statement In this study, we report the development of silk microfiber-reinforced type I collagen hydrogels for 3D bioprinting and cell culture. In contrast with previously reported studies, a novel physical method allowed the preservation of the silk sericin protein. Hydrogels were stable, showed no phase separation between the biomaterials, and they presented improved printability. An increase between two- and threefold of the multiscale stiffness of the scaffolds was achieved with no need of using additional crosslinkers or complex methods, which could be of high relevance for cardiac patches development and for preconditioning mesenchymal stem cells (MSCs) for therapeutic applications. We demonstrate that bone marrow-derived MSCs can be effectively bioprinted and 3D cultured within the stiffened structures." @default.
- W3007051837 created "2020-03-06" @default.
- W3007051837 creator A5037535424 @default.
- W3007051837 creator A5045419570 @default.
- W3007051837 creator A5052371243 @default.
- W3007051837 creator A5067862560 @default.
- W3007051837 creator A5069972127 @default.
- W3007051837 creator A5071713690 @default.
- W3007051837 creator A5075612662 @default.
- W3007051837 creator A5085294412 @default.
- W3007051837 creator A5090772579 @default.
- W3007051837 date "2020-03-01" @default.
- W3007051837 modified "2023-10-06" @default.
- W3007051837 title "Silk-Reinforced Collagen Hydrogels with Raised Multiscale Stiffness for Mesenchymal Cells 3D Culture" @default.
- W3007051837 cites W1174494744 @default.
- W3007051837 cites W1937091029 @default.
- W3007051837 cites W1969105468 @default.
- W3007051837 cites W1972243157 @default.
- W3007051837 cites W1977109906 @default.
- W3007051837 cites W1991296603 @default.
- W3007051837 cites W2002192590 @default.
- W3007051837 cites W2010543184 @default.
- W3007051837 cites W2026799007 @default.
- W3007051837 cites W2029033315 @default.
- W3007051837 cites W2033298169 @default.
- W3007051837 cites W2033689464 @default.
- W3007051837 cites W2038987199 @default.
- W3007051837 cites W2039132520 @default.
- W3007051837 cites W2042022714 @default.
- W3007051837 cites W2060077653 @default.
- W3007051837 cites W2063087782 @default.
- W3007051837 cites W2066438682 @default.
- W3007051837 cites W2068465654 @default.
- W3007051837 cites W2072527711 @default.
- W3007051837 cites W2080166457 @default.
- W3007051837 cites W2083271694 @default.
- W3007051837 cites W2086971550 @default.
- W3007051837 cites W2102584783 @default.
- W3007051837 cites W2105653408 @default.
- W3007051837 cites W2110162714 @default.
- W3007051837 cites W2133650283 @default.
- W3007051837 cites W2157484111 @default.
- W3007051837 cites W2157908104 @default.
- W3007051837 cites W2165673443 @default.
- W3007051837 cites W2299693612 @default.
- W3007051837 cites W2325212255 @default.
- W3007051837 cites W2405469043 @default.
- W3007051837 cites W2411636592 @default.
- W3007051837 cites W2438500403 @default.
- W3007051837 cites W2514137348 @default.
- W3007051837 cites W2514215197 @default.
- W3007051837 cites W2515937195 @default.
- W3007051837 cites W2553157303 @default.
- W3007051837 cites W2560600299 @default.
- W3007051837 cites W2576633993 @default.
- W3007051837 cites W2589606226 @default.
- W3007051837 cites W2590195315 @default.
- W3007051837 cites W2592858278 @default.
- W3007051837 cites W2603353094 @default.
- W3007051837 cites W2608161551 @default.
- W3007051837 cites W2610784388 @default.
- W3007051837 cites W2620860591 @default.
- W3007051837 cites W2626192157 @default.
- W3007051837 cites W2736508893 @default.
- W3007051837 cites W2746545584 @default.
- W3007051837 cites W2755809001 @default.
- W3007051837 cites W2757826601 @default.
- W3007051837 cites W2765236784 @default.
- W3007051837 cites W2765543116 @default.
- W3007051837 cites W2765852566 @default.
- W3007051837 cites W2765979567 @default.
- W3007051837 cites W2767365035 @default.
- W3007051837 cites W2788966615 @default.
- W3007051837 cites W2791092139 @default.
- W3007051837 cites W2792667030 @default.
- W3007051837 cites W2797463248 @default.
- W3007051837 cites W2801605316 @default.
- W3007051837 cites W2801929954 @default.
- W3007051837 cites W2807387796 @default.
- W3007051837 cites W2814892626 @default.
- W3007051837 cites W2886367257 @default.
- W3007051837 cites W2887574733 @default.
- W3007051837 cites W2887937567 @default.
- W3007051837 cites W2891467376 @default.
- W3007051837 cites W2891516625 @default.
- W3007051837 cites W2896446481 @default.
- W3007051837 cites W2909394322 @default.
- W3007051837 cites W2918541981 @default.
- W3007051837 cites W2921134457 @default.
- W3007051837 cites W2922253149 @default.
- W3007051837 cites W2923614429 @default.
- W3007051837 cites W2933891664 @default.
- W3007051837 cites W2939654433 @default.
- W3007051837 cites W2943990749 @default.
- W3007051837 cites W2950242955 @default.
- W3007051837 cites W2981766115 @default.
- W3007051837 cites W2988006609 @default.
- W3007051837 doi "https://doi.org/10.1089/ten.tea.2019.0199" @default.