Matches in SemOpenAlex for { <https://semopenalex.org/work/W3007130207> ?p ?o ?g. }
- W3007130207 abstract "The assessment of energy expenditure in real life is of great importance for monitoring the current physical state of people, especially in work, sport, elderly care, health care, and everyday life even. This work reports about application of some machine learning methods (linear regression, linear discriminant analysis, k-nearest neighbors, decision tree, random forest, Gaussian naive Bayes, support-vector machine) for monitoring energy expenditures in athletes. The classification problem was to predict the known level of the in-exercise loads (in three categories by calories) by the heart rate activity features measured during the short period of time (1 minute only) after training, i.e by features of the post-exercise load. The results obtained shown that the post-exercise heart activity features preserve the information of the in-exercise training loads and allow us to predict their actual in-exercise levels. The best performance can be obtained by the random forest classifier with all 8 heart rate features (micro-averaged area under curve value AUC <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>micro</sub> = 0.87 and macro-averaged one AUC <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>macro</sub> = 0.88) and the k-nearest neighbors classifier with 4 most important heart rate features (AUC <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>micro</sub> =0.91 and AUC <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>macro</sub> =0.89). The limitations and perspectives of the ML methods used are outlined, and some practical advices are proposed as to their improvement and implementation for the better prediction of in-exercise energy expenditures." @default.
- W3007130207 created "2020-03-06" @default.
- W3007130207 creator A5004548666 @default.
- W3007130207 creator A5005082546 @default.
- W3007130207 creator A5010339587 @default.
- W3007130207 creator A5011868635 @default.
- W3007130207 creator A5021035237 @default.
- W3007130207 creator A5082599710 @default.
- W3007130207 date "2019-12-01" @default.
- W3007130207 modified "2023-10-02" @default.
- W3007130207 title "Prediction of Physical Load Level by Machine Learning Analysis of Heart Activity after Exercises" @default.
- W3007130207 cites W129943291 @default.
- W3007130207 cites W1964955194 @default.
- W3007130207 cites W1989445106 @default.
- W3007130207 cites W2001619934 @default.
- W3007130207 cites W2018743054 @default.
- W3007130207 cites W2020287812 @default.
- W3007130207 cites W2024149204 @default.
- W3007130207 cites W2050695318 @default.
- W3007130207 cites W2082001224 @default.
- W3007130207 cites W2096861347 @default.
- W3007130207 cites W2110462189 @default.
- W3007130207 cites W2120748149 @default.
- W3007130207 cites W2122111042 @default.
- W3007130207 cites W2141246106 @default.
- W3007130207 cites W2162800060 @default.
- W3007130207 cites W2172242775 @default.
- W3007130207 cites W2275850612 @default.
- W3007130207 cites W2277308890 @default.
- W3007130207 cites W2286467115 @default.
- W3007130207 cites W2726111344 @default.
- W3007130207 cites W2750378047 @default.
- W3007130207 cites W2787868933 @default.
- W3007130207 cites W2800705832 @default.
- W3007130207 cites W2806501763 @default.
- W3007130207 cites W2886232760 @default.
- W3007130207 cites W2889991753 @default.
- W3007130207 cites W2899575621 @default.
- W3007130207 cites W2949980495 @default.
- W3007130207 cites W3098890378 @default.
- W3007130207 cites W3102735044 @default.
- W3007130207 doi "https://doi.org/10.1109/ssci44817.2019.9002970" @default.
- W3007130207 hasPublicationYear "2019" @default.
- W3007130207 type Work @default.
- W3007130207 sameAs 3007130207 @default.
- W3007130207 citedByCount "4" @default.
- W3007130207 countsByYear W30071302072021 @default.
- W3007130207 countsByYear W30071302072022 @default.
- W3007130207 countsByYear W30071302072023 @default.
- W3007130207 crossrefType "proceedings-article" @default.
- W3007130207 hasAuthorship W3007130207A5004548666 @default.
- W3007130207 hasAuthorship W3007130207A5005082546 @default.
- W3007130207 hasAuthorship W3007130207A5010339587 @default.
- W3007130207 hasAuthorship W3007130207A5011868635 @default.
- W3007130207 hasAuthorship W3007130207A5021035237 @default.
- W3007130207 hasAuthorship W3007130207A5082599710 @default.
- W3007130207 hasBestOaLocation W30071302072 @default.
- W3007130207 hasConcept C119857082 @default.
- W3007130207 hasConcept C12267149 @default.
- W3007130207 hasConcept C126322002 @default.
- W3007130207 hasConcept C154945302 @default.
- W3007130207 hasConcept C169258074 @default.
- W3007130207 hasConcept C2777953023 @default.
- W3007130207 hasConcept C41008148 @default.
- W3007130207 hasConcept C48921125 @default.
- W3007130207 hasConcept C52001869 @default.
- W3007130207 hasConcept C69738355 @default.
- W3007130207 hasConcept C71924100 @default.
- W3007130207 hasConcept C84393581 @default.
- W3007130207 hasConcept C84525736 @default.
- W3007130207 hasConceptScore W3007130207C119857082 @default.
- W3007130207 hasConceptScore W3007130207C12267149 @default.
- W3007130207 hasConceptScore W3007130207C126322002 @default.
- W3007130207 hasConceptScore W3007130207C154945302 @default.
- W3007130207 hasConceptScore W3007130207C169258074 @default.
- W3007130207 hasConceptScore W3007130207C2777953023 @default.
- W3007130207 hasConceptScore W3007130207C41008148 @default.
- W3007130207 hasConceptScore W3007130207C48921125 @default.
- W3007130207 hasConceptScore W3007130207C52001869 @default.
- W3007130207 hasConceptScore W3007130207C69738355 @default.
- W3007130207 hasConceptScore W3007130207C71924100 @default.
- W3007130207 hasConceptScore W3007130207C84393581 @default.
- W3007130207 hasConceptScore W3007130207C84525736 @default.
- W3007130207 hasLocation W30071302071 @default.
- W3007130207 hasLocation W30071302072 @default.
- W3007130207 hasOpenAccess W3007130207 @default.
- W3007130207 hasPrimaryLocation W30071302071 @default.
- W3007130207 hasRelatedWork W2985924212 @default.
- W3007130207 hasRelatedWork W4200057378 @default.
- W3007130207 hasRelatedWork W4285407528 @default.
- W3007130207 hasRelatedWork W4289812785 @default.
- W3007130207 hasRelatedWork W4308191010 @default.
- W3007130207 hasRelatedWork W4313070894 @default.
- W3007130207 hasRelatedWork W4321636153 @default.
- W3007130207 hasRelatedWork W4377964522 @default.
- W3007130207 hasRelatedWork W4383746529 @default.
- W3007130207 hasRelatedWork W4384345534 @default.
- W3007130207 isParatext "false" @default.
- W3007130207 isRetracted "false" @default.
- W3007130207 magId "3007130207" @default.