Matches in SemOpenAlex for { <https://semopenalex.org/work/W3007167218> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W3007167218 endingPage "2358" @default.
- W3007167218 startingPage "2352" @default.
- W3007167218 abstract "No AccessTechnical NotesCharacterization of Post-shock Thermal Striations on a Cone/FlareCorrections for this articleCorrection: Characterization of Post-Shock Thermal Striations on a Cone/FlareCarson L. Running, Thomas J. Juliano, Matthew P. Borg and Roger L. KimmelCarson L. RunningUniversity of Notre Dame, Notre Dame, Indiana 46556*Graduate Research Assistant, Department of Aerospace and Mechanical Engineering.Search for more papers by this author, Thomas J. JulianoUniversity of Notre Dame, Notre Dame, Indiana 46556†Assistant Professor, Department of Aerospace and Mechanical Engineering.Search for more papers by this author, Matthew P. BorgU.S. Air Force Research Laboratory, Wright–Patterson Air Force Base, Ohio 45433‡Senior Aerospace Engineer, AFRL/RQHF, 1950 5th Street. Senior Member AIAA.Search for more papers by this author and Roger L. KimmelU.S. Air Force Research Laboratory, Wright–Patterson Air Force Base, Ohio 45433§Principal Aerospace Engineer, AFRL/RQHF, 1950 5th Street. Associate Fellow AIAA.Search for more papers by this authorPublished Online:27 Feb 2020https://doi.org/10.2514/1.J059095SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Anderson J., Hypersonic and High Temperature Gas Dynamics, 2nd ed., AIAA, Reston, VA, 2006, Chaps. 6–7. https://doi.org/10.2514/4.861956 LinkGoogle Scholar[2] Arnal D. and Délery J., “Laminar-Turbulent Transition and Shock Wave/Boundary Layer Interaction,” the von Karman Inst., TR-RTO-EN-AVT 116, Rhode-St-Genese, Belgium, Dec. 2005. Google Scholar[3] de la Chevaleria D. A., Fonteneau A., Luca L. D. and Cardone G., “Görtler-Type Vortices in Hypersonic Flows: The Ramp Problem,” Experimental Thermal and Fluid Science, Vol. 15, No. 2, 1997, pp. 69–81. https://doi.org/10.1016/S0894-1777(97)00051-4 Google Scholar[4] Dwivedi A., Sidharth G. S., Nichols J. W., Candler G. V. and Jovanovic M. R., “Reattachment Streaks in Hypersonic Compression Ramp Flow: An Input-Output Analysis,” Journal of Fluid Mechanics, Vol. 880, No. 10, 2019, pp. 113–135. https://doi.org/10.1017/jfm.2019.702 Google Scholar[5] Roghelia A., Chuvakhov P., Olivier H. and Egorov I., “Experimental Investigation of Görtler Vortices in Hypersonic Ramp Flows Behind Sharp and Blunt Leading Edges,” AIAA Paper 2017-3463, June 2017. https://doi.org/10.2514/6.2017-3463 Google Scholar[6] Ginoux J. J., “Streamwise Vortices in Reattaching High-Speed Flows: A Suggested Approach,” AIAA Journal, Vol. 9, No. 4, 1971, pp. 759–760. https://doi.org/10.2514/3.6271 LinkGoogle Scholar[7] Heffner K., Chpoun A. and Lengrand J., “Experimental Study of Transitional Axisymmetric Shock-Boundary Layer Interactions at Mach 5,” AIAA Paper 1993-3131, July 1993. https://doi.org/10.2514/6.1993-3131 Google Scholar[8] Benay R., Chanetz B., Mangin B., Vandomme L. and Perraud J., “Shock Wave/Transitional Boundary-Layer Interactions in Hypersonic Flow,” AIAA Journal, Vol. 44, No. 6, 2006, pp. 1243–1254. https://doi.org/10.2514/1.10512 LinkGoogle Scholar[9] Ciolkosz L. D. and Spina E. F., “An Experimental Study of Görtler Vortices in Compressible Flow,” AIAA Paper 2006-4512, July 2006. https://doi.org/10.2514/6.2006-4512 Google Scholar[10] Vermeulen J. P. and Simeonides G., “Parametric Studies of Shock Wave/Boundary Layer Interactions over 2D Compression Corners at Mach 6,” von Kármán Inst. for Fluid Dynamics TR 181, Sint-Genesius-Rode, Belgium, Sept. 1992. Google Scholar[11] de Luca L., Cardone G., de la Chevalerie D. and Fonteneau A., “Viscous Interaction Phenomena in Hypersonic Wedge Flow,” AIAA Journal, Vol. 33, No. 12, 1995, pp. 2293–2298. https://doi.org/10.2514/3.12982 LinkGoogle Scholar[12] Roghelia A., Olivier H., Egorov I. and Chuvakhov P., “Experimental Investigation of Görtler Vortices in Hypersonic Ramp Flows,” Experiments in Fluids, Vol. 58, No. 10, 2017, p. 139. https://doi.org/10.1007/s00348-017-2422-y CrossrefGoogle Scholar[13] Leinemann M., Radespiel R., Muñoz F., Esquieu S., McKiernan G. and Schneider S. P., “Boundary Layer Transition on a Generic Model of Control Flaps in Hypersonic Flow,” AIAA Paper 2019-1908, Jan. 2019. https://doi.org/10.2514/6.2019-1908 LinkGoogle Scholar[14] Running C. L., Juliano T. J., Jewell J. S., Borg M. P. and Kimmel R. L., “Hypersonic Shock-Wave/Boundary-Layer Interactions on a Cone/Flare,” Experimental Thermal and Fluid Science, Vol. 109, Dec. 2019, Paper 109911. https://doi.org/10.1016/j.expthermflusci.2019.109911 Google Scholar[15] Kimmel R. L., Borg M. P., Jewell J. S., Lam K., Bowersox R., Srinivasan R., Fuchs S. and Mooney T., “AFRL Ludwieg Tube Initial Performance,” AIAA Paper 2017-0102, Jan. 2017. https://doi.org/10.2514/6.2017-0102 Google Scholar[16] Running C. L., Thompson M. J., Juliano T. J. and Sakaue H., “Boundary-Layer Separation Detection for a Cone at High Angle of Attack in Mach 4.5 Flow with Pressure-Sensitive Paint,” AIAA Paper 2017-3120, June 2017. LinkGoogle Scholar[17] Running C. L., Sakaue H. and Juliano T. J., “Hypersonic Boundary-Layer Separation Detection with Pressure-Sensitive Paint for a Cone at High Angle of Attack,” Experiments in Fluids, Vol. 60, No. 23, 2019, pp. 1–13. https://doi.org/10.1007/s00348-018-2665-2 Google Scholar[18] Boyd C. F. and Howell A., “Numerical Investigation of One-Dimensional Heat-Flux Calculations,” Dahlgren Division Naval Surface Warfare Center Tech. Rept. NSWCDD/TR-94/114, Silver Spring, MD, Oct. 1994. Google Scholar[19] Juliano T. J., Adamczak D. W. and Kimmel R. L., “HIFiRE-5 Flight Test Heating Analysis,” AIAA Paper 2014-0076, Jan. 2014. https://doi.org/10.2514/6.2014-0076 LinkGoogle Scholar[20] Labuda D. A., “Schlieren Imaging and Flow Analysis on a Cone/Flare Model in the AFRL Mach 6 Ludwieg Tube Facility,” Master’s Thesis, Air Force Inst. of Technology, Wright-Patterson AFB, OH, March 2019. Google Scholar[21] Asma C., Paris S. and Tapsoba M., “Transitional Shock-Wave Boundary Layer Interaction over a Cone-Flare Model at Hypersonic Conditions,” ESASP Paper 487, Oct. 2002. Google Scholar[22] Holden M., Carr Z., MacLean M. and Wadhams T., “Measurements in Regions of Shock Wave/Turbulent Boundary Layer Interactions from Mach 5 to 6 at Flight Duplicated Velocities to Evaluate and Improve the Models of Turbulence in CFD Codes,” AIAA Paper 2018-3706, June 2018. https://doi.org/10.2514/6.2018-3706 Google Scholar[23] Anderson J. D., Modern Compressible Flow: With Historical Perspective, 3rd ed., McGraw-Hill, New York, 2003, Chap. 10. Google Scholar[24] Ames Research Staff, “Equations, Tables, and Charts for Compressible Flow,” NACA Tech. Rept. 1135, 1953. Google Scholar[25] Souverein L. J., Bakker P. G. and Dupont P., “A Scaling Analysis for Turbulent Shock-Wave/Boundary-Layer Interactions,” Journal of Fluid Mechanics, Vol. 714, Jan. 2013, pp. 505–535. https://doi.org/10.1017/jfm.2012.495 CrossrefGoogle Scholar[26] Simeonides G., “Hypersonic Shock Wave Boundary Interactions over Simplified Deflected Control Surface Configurations,” Special Course on Shock-Wave/Boundary-Layer Interaction in Supersonic and Hypersonic Flows, AGARD, 1993, pp. 7.1–7.47. Google Scholar[27] Simeonides G., “Hypersonic ShockWave Boundary Layer Interactions over Compression Corners,” Ph.D. Thesis, U. Bristol/von Kármán Inst., April 1992. Google Scholar[28] Cöet M., Délery J. and Chanetz B., “Experimental Study of Shock Wave-Boundary Layer Interaction at High Mach Number with Entropy Layer Effect,” Proceedings, IUTAM Symposium on Aerothermochemistry of Spacecraft and Associated Hypersonic Flows, edited by Brun R. and Chikkaoui A. A., Joeve, Marseille, 1992, pp. 338–343. Google Scholar Previous article Next article FiguresReferencesRelatedDetailsCited byHypersonic Shock-Wave/Boundary-Layer Interactions on the ROTEX-T Cone/FlareJonathan Davami, Thomas J. Juliano, Anton Scholten and Pedro Paredes19 January 2023Implementation of Self-Aligned Focusing Schlieren for Hypersonic Boundary Layer MeasurementsJonathan L. Hill, Matthew P. Borg, Elizabeth K. Benitez, Carson L. Running and Mark F. Reeder19 January 2023Boundary Layer Separation on a Hollow-Cylinder/Flare at Mach 5James A. Threadgill, Ashish Singh, Alejandro Roskelley Garcia and Jesse C. Little19 January 2023Boundary-Layer Instabilities over a Cone–Cylinder–Flare Model at Mach 6Pedro Paredes , Anton Scholten , Meelan M. Choudhari, Fei Li, Elizabeth K. Benitez and Joseph S. Jewell29 July 2022 | AIAA Journal, Vol. 60, No. 10A wrap-film technique for infrared thermography heat-transfer measurements in high-speed wind tunnelsExperimental Thermal and Fluid Science, Vol. 135Transitional shockwave/boundary layer interaction experiments in the R2Ch blowdown wind tunnel16 February 2022 | Experiments in Fluids, Vol. 63, No. 2Boundary-Layer Instabilities Over a Cone-Cylinder-Flare Model at Mach 6Pedro Paredes, Anton Scholten, Meelan M. Choudhari, Fei Li, Elizabeth K. Benitez and Joseph S. Jewell29 December 2021Streamwise Vortices from Controlled Roughnesses on a Cone-Cylinder-Flare at Mach 6Lauren N. Wagner, Steven P. Schneider and Joseph S. Jewell29 December 2021Global measurements of hypersonic shock-wave/boundary-layer interactions with pressure-sensitive paint10 April 2021 | Experiments in Fluids, Vol. 62, No. 5Related articlesCorrection: Characterization of Post-Shock Thermal Striations on a Cone/Flare3 Jun 2022AIAA Journal What's Popular Volume 58, Number 5May 2020 CrossmarkInformationCopyright © 2020 by Carson L. Running. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-385X to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp. TopicsAerodynamicsAeronautical EngineeringAeronauticsAerothermodynamicsAviationAviation SafetyBoundary LayersFlight TestFlow RegimesFluid DynamicsOblique Shock WaveShock WavesThermodynamicsThermophysics and Heat TransferVortex DynamicsWind Tunnels KeywordsBoundary Layer SeparationFlow Visualization TechniquesFreestream Mach NumberHypersonic FlowsGortler VorticesAir Force Research LaboratoryFlight TestingWind Tunnel TestsWall TemperatureFORTRANAcknowledgmentsThe authors thank Lieutenant Michael Rynders, AFRL/RQHF, for his support conducting these tests in AFRL’s Mach-6 Ludwieg Tube. In addition, thanks goes out to Notre Dame undergraduate research assistants Michael Thompson for his work with the image-mapping code and Jens Rataczak for his assistance with the model wrap. This work has been cleared for public release (Case Number 88ABW-2019-4644).PDF Received25 September 2019Accepted27 January 2020Published online27 February 2020" @default.
- W3007167218 created "2020-03-06" @default.
- W3007167218 creator A5051400753 @default.
- W3007167218 creator A5055826110 @default.
- W3007167218 creator A5059237323 @default.
- W3007167218 creator A5066900305 @default.
- W3007167218 date "2020-05-01" @default.
- W3007167218 modified "2023-09-27" @default.
- W3007167218 title "Characterization of Post-shock Thermal Striations on a Cone/Flare" @default.
- W3007167218 cites W1975236741 @default.
- W3007167218 cites W2010539133 @default.
- W3007167218 cites W2080658573 @default.
- W3007167218 cites W2159542152 @default.
- W3007167218 cites W2312503338 @default.
- W3007167218 cites W2314515089 @default.
- W3007167218 cites W2314985579 @default.
- W3007167218 cites W2568600927 @default.
- W3007167218 cites W2620732332 @default.
- W3007167218 cites W2621185590 @default.
- W3007167218 cites W2755149451 @default.
- W3007167218 cites W2811016194 @default.
- W3007167218 cites W2909374508 @default.
- W3007167218 cites W2971416960 @default.
- W3007167218 cites W3103647500 @default.
- W3007167218 cites W4249057576 @default.
- W3007167218 doi "https://doi.org/10.2514/1.j059095" @default.
- W3007167218 hasPublicationYear "2020" @default.
- W3007167218 type Work @default.
- W3007167218 sameAs 3007167218 @default.
- W3007167218 citedByCount "10" @default.
- W3007167218 countsByYear W30071672182021 @default.
- W3007167218 countsByYear W30071672182022 @default.
- W3007167218 countsByYear W30071672182023 @default.
- W3007167218 crossrefType "journal-article" @default.
- W3007167218 hasAuthorship W3007167218A5051400753 @default.
- W3007167218 hasAuthorship W3007167218A5055826110 @default.
- W3007167218 hasAuthorship W3007167218A5059237323 @default.
- W3007167218 hasAuthorship W3007167218A5066900305 @default.
- W3007167218 hasConcept C11413529 @default.
- W3007167218 hasConcept C120665830 @default.
- W3007167218 hasConcept C121332964 @default.
- W3007167218 hasConcept C126322002 @default.
- W3007167218 hasConcept C132373408 @default.
- W3007167218 hasConcept C153294291 @default.
- W3007167218 hasConcept C176177977 @default.
- W3007167218 hasConcept C192562407 @default.
- W3007167218 hasConcept C204530211 @default.
- W3007167218 hasConcept C2779588948 @default.
- W3007167218 hasConcept C2780841128 @default.
- W3007167218 hasConcept C2781300812 @default.
- W3007167218 hasConcept C30014739 @default.
- W3007167218 hasConcept C33923547 @default.
- W3007167218 hasConcept C44870925 @default.
- W3007167218 hasConcept C57879066 @default.
- W3007167218 hasConcept C70477161 @default.
- W3007167218 hasConcept C71924100 @default.
- W3007167218 hasConcept C97355855 @default.
- W3007167218 hasConceptScore W3007167218C11413529 @default.
- W3007167218 hasConceptScore W3007167218C120665830 @default.
- W3007167218 hasConceptScore W3007167218C121332964 @default.
- W3007167218 hasConceptScore W3007167218C126322002 @default.
- W3007167218 hasConceptScore W3007167218C132373408 @default.
- W3007167218 hasConceptScore W3007167218C153294291 @default.
- W3007167218 hasConceptScore W3007167218C176177977 @default.
- W3007167218 hasConceptScore W3007167218C192562407 @default.
- W3007167218 hasConceptScore W3007167218C204530211 @default.
- W3007167218 hasConceptScore W3007167218C2779588948 @default.
- W3007167218 hasConceptScore W3007167218C2780841128 @default.
- W3007167218 hasConceptScore W3007167218C2781300812 @default.
- W3007167218 hasConceptScore W3007167218C30014739 @default.
- W3007167218 hasConceptScore W3007167218C33923547 @default.
- W3007167218 hasConceptScore W3007167218C44870925 @default.
- W3007167218 hasConceptScore W3007167218C57879066 @default.
- W3007167218 hasConceptScore W3007167218C70477161 @default.
- W3007167218 hasConceptScore W3007167218C71924100 @default.
- W3007167218 hasConceptScore W3007167218C97355855 @default.
- W3007167218 hasIssue "5" @default.
- W3007167218 hasLocation W30071672181 @default.
- W3007167218 hasOpenAccess W3007167218 @default.
- W3007167218 hasPrimaryLocation W30071672181 @default.
- W3007167218 hasRelatedWork W2004030915 @default.
- W3007167218 hasRelatedWork W2031712278 @default.
- W3007167218 hasRelatedWork W2046026260 @default.
- W3007167218 hasRelatedWork W2047970928 @default.
- W3007167218 hasRelatedWork W2063060450 @default.
- W3007167218 hasRelatedWork W2074582592 @default.
- W3007167218 hasRelatedWork W2335218423 @default.
- W3007167218 hasRelatedWork W3196728932 @default.
- W3007167218 hasRelatedWork W4294927156 @default.
- W3007167218 hasRelatedWork W977779844 @default.
- W3007167218 hasVolume "58" @default.
- W3007167218 isParatext "false" @default.
- W3007167218 isRetracted "false" @default.
- W3007167218 magId "3007167218" @default.
- W3007167218 workType "article" @default.