Matches in SemOpenAlex for { <https://semopenalex.org/work/W3007173800> ?p ?o ?g. }
- W3007173800 endingPage "101918" @default.
- W3007173800 startingPage "101918" @default.
- W3007173800 abstract "Emotions play a crucial role in our daily life. Emotion recognition has been used in numerous areas such as education, rehabilitation, etc. Simple to record and cost-effective, Electroencephalogram (EEG)-based emotion classification has been attracting a great deal of attention so far. Since our feelings are controlled by our brain which is inherently complex, it is imperative to employ nonlinear methods especially EEG phase space as it contains valuable information about EEG dynamics. In this study, EEG phase space is reconstructed and transformed into a new state space. Poincare planes are utilized to describe the proposed state space mathematically. They quantify EEG dynamics. Poincare intersections are extracted as features and then fed to the classification models including multi-layer perceptron (MLP), k-nearest neighbor (KNN) and multi-class support vector machine (MSVM). Variable and constant number of Poincare planes are considered and three different approaches are taken to determine optimum planes. A very reliable database is used and different aspects are considered to test the proposed method fairly. We employ three different evaluation scenarios including leave-one-subject-out, leave-one-trial-out and ten-fold cross validation and the recognition rates for all the scenarios are above 70% which is comparable to the previous studies. Not only is the proposed method effective in emotion recognition but it also introduces a novel approach to nonlinear signal processing which can also be employed in other applications and describe signals’ complex dynamics appropriately." @default.
- W3007173800 created "2020-03-06" @default.
- W3007173800 creator A5011004371 @default.
- W3007173800 creator A5035978702 @default.
- W3007173800 creator A5052290238 @default.
- W3007173800 creator A5076557011 @default.
- W3007173800 date "2020-05-01" @default.
- W3007173800 modified "2023-10-11" @default.
- W3007173800 title "Emotion recognition using EEG phase space dynamics and Poincare intersections" @default.
- W3007173800 cites W1862394037 @default.
- W3007173800 cites W2001097956 @default.
- W3007173800 cites W2002055708 @default.
- W3007173800 cites W2005445667 @default.
- W3007173800 cites W2008275147 @default.
- W3007173800 cites W2031365860 @default.
- W3007173800 cites W2040171374 @default.
- W3007173800 cites W2040704490 @default.
- W3007173800 cites W2057490138 @default.
- W3007173800 cites W2087810295 @default.
- W3007173800 cites W2090763911 @default.
- W3007173800 cites W2107541057 @default.
- W3007173800 cites W2117645142 @default.
- W3007173800 cites W2128495200 @default.
- W3007173800 cites W2149628368 @default.
- W3007173800 cites W2165857685 @default.
- W3007173800 cites W2176865601 @default.
- W3007173800 cites W236742792 @default.
- W3007173800 cites W2405695182 @default.
- W3007173800 cites W2460423486 @default.
- W3007173800 cites W2523525429 @default.
- W3007173800 cites W2565944610 @default.
- W3007173800 cites W2604287166 @default.
- W3007173800 cites W2736525208 @default.
- W3007173800 cites W2770341796 @default.
- W3007173800 cites W2783519296 @default.
- W3007173800 cites W2788007871 @default.
- W3007173800 cites W2790814155 @default.
- W3007173800 cites W2799657112 @default.
- W3007173800 cites W2884935442 @default.
- W3007173800 cites W2887001658 @default.
- W3007173800 cites W2889504373 @default.
- W3007173800 cites W2898848203 @default.
- W3007173800 cites W2920125235 @default.
- W3007173800 cites W2922882122 @default.
- W3007173800 cites W2923290627 @default.
- W3007173800 cites W2936882366 @default.
- W3007173800 cites W2941401350 @default.
- W3007173800 cites W2946526173 @default.
- W3007173800 cites W4253175466 @default.
- W3007173800 doi "https://doi.org/10.1016/j.bspc.2020.101918" @default.
- W3007173800 hasPublicationYear "2020" @default.
- W3007173800 type Work @default.
- W3007173800 sameAs 3007173800 @default.
- W3007173800 citedByCount "16" @default.
- W3007173800 countsByYear W30071738002021 @default.
- W3007173800 countsByYear W30071738002022 @default.
- W3007173800 countsByYear W30071738002023 @default.
- W3007173800 crossrefType "journal-article" @default.
- W3007173800 hasAuthorship W3007173800A5011004371 @default.
- W3007173800 hasAuthorship W3007173800A5035978702 @default.
- W3007173800 hasAuthorship W3007173800A5052290238 @default.
- W3007173800 hasAuthorship W3007173800A5076557011 @default.
- W3007173800 hasConcept C105795698 @default.
- W3007173800 hasConcept C111919701 @default.
- W3007173800 hasConcept C118552586 @default.
- W3007173800 hasConcept C121332964 @default.
- W3007173800 hasConcept C12267149 @default.
- W3007173800 hasConcept C151342819 @default.
- W3007173800 hasConcept C153180895 @default.
- W3007173800 hasConcept C154945302 @default.
- W3007173800 hasConcept C15744967 @default.
- W3007173800 hasConcept C158622935 @default.
- W3007173800 hasConcept C179717631 @default.
- W3007173800 hasConcept C2778572836 @default.
- W3007173800 hasConcept C33923547 @default.
- W3007173800 hasConcept C41008148 @default.
- W3007173800 hasConcept C50644808 @default.
- W3007173800 hasConcept C522805319 @default.
- W3007173800 hasConcept C60908668 @default.
- W3007173800 hasConcept C62520636 @default.
- W3007173800 hasConcept C72434380 @default.
- W3007173800 hasConcept C97355855 @default.
- W3007173800 hasConceptScore W3007173800C105795698 @default.
- W3007173800 hasConceptScore W3007173800C111919701 @default.
- W3007173800 hasConceptScore W3007173800C118552586 @default.
- W3007173800 hasConceptScore W3007173800C121332964 @default.
- W3007173800 hasConceptScore W3007173800C12267149 @default.
- W3007173800 hasConceptScore W3007173800C151342819 @default.
- W3007173800 hasConceptScore W3007173800C153180895 @default.
- W3007173800 hasConceptScore W3007173800C154945302 @default.
- W3007173800 hasConceptScore W3007173800C15744967 @default.
- W3007173800 hasConceptScore W3007173800C158622935 @default.
- W3007173800 hasConceptScore W3007173800C179717631 @default.
- W3007173800 hasConceptScore W3007173800C2778572836 @default.
- W3007173800 hasConceptScore W3007173800C33923547 @default.
- W3007173800 hasConceptScore W3007173800C41008148 @default.
- W3007173800 hasConceptScore W3007173800C50644808 @default.
- W3007173800 hasConceptScore W3007173800C522805319 @default.