Matches in SemOpenAlex for { <https://semopenalex.org/work/W3007325578> ?p ?o ?g. }
- W3007325578 abstract "Gaussian processes are the gold standard for many real-world modeling problems, especially in cases where a model's success hinges upon its ability to faithfully represent predictive uncertainty. These problems typically exist as parts of larger frameworks, wherein quantities of interest are ultimately defined by integrating over posterior distributions. These quantities are frequently intractable, motivating the use of Monte Carlo methods. Despite substantial progress in scaling up Gaussian processes to large training sets, methods for accurately generating draws from their posterior distributions still scale cubically in the number of test locations. We identify a decomposition of Gaussian processes that naturally lends itself to scalable sampling by separating out the prior from the data. Building off of this factorization, we propose an easy-to-use and general-purpose approach for fast posterior sampling, which seamlessly pairs with sparse approximations to afford scalability both during training and at test time. In a series of experiments designed to test competing sampling schemes' statistical properties and practical ramifications, we demonstrate how decoupled sample paths accurately represent Gaussian process posteriors at a fraction of the usual cost." @default.
- W3007325578 created "2020-03-06" @default.
- W3007325578 creator A5001763022 @default.
- W3007325578 creator A5011507387 @default.
- W3007325578 creator A5024005489 @default.
- W3007325578 creator A5037482578 @default.
- W3007325578 creator A5075044662 @default.
- W3007325578 date "2020-02-21" @default.
- W3007325578 modified "2023-10-09" @default.
- W3007325578 title "Efficiently Sampling Functions from Gaussian Process Posteriors" @default.
- W3007325578 cites W137285897 @default.
- W3007325578 cites W1482411441 @default.
- W3007325578 cites W1536001458 @default.
- W3007325578 cites W1560724230 @default.
- W3007325578 cites W1571870753 @default.
- W3007325578 cites W1746819321 @default.
- W3007325578 cites W1777124189 @default.
- W3007325578 cites W1821343735 @default.
- W3007325578 cites W2009375605 @default.
- W3007325578 cites W2015620003 @default.
- W3007325578 cites W2018705428 @default.
- W3007325578 cites W2024931169 @default.
- W3007325578 cites W2027792629 @default.
- W3007325578 cites W2032916024 @default.
- W3007325578 cites W2035814233 @default.
- W3007325578 cites W2039522160 @default.
- W3007325578 cites W2056842996 @default.
- W3007325578 cites W2061191702 @default.
- W3007325578 cites W2067181097 @default.
- W3007325578 cites W2079559649 @default.
- W3007325578 cites W2099768828 @default.
- W3007325578 cites W2101709642 @default.
- W3007325578 cites W2113741278 @default.
- W3007325578 cites W2131241448 @default.
- W3007325578 cites W2144902422 @default.
- W3007325578 cites W2151268438 @default.
- W3007325578 cites W2158131535 @default.
- W3007325578 cites W2166471851 @default.
- W3007325578 cites W2167789032 @default.
- W3007325578 cites W2192203593 @default.
- W3007325578 cites W2550412943 @default.
- W3007325578 cites W2751932473 @default.
- W3007325578 cites W2799181865 @default.
- W3007325578 cites W2803167060 @default.
- W3007325578 cites W2890055393 @default.
- W3007325578 cites W2890056239 @default.
- W3007325578 cites W2962996090 @default.
- W3007325578 cites W2963173208 @default.
- W3007325578 cites W2963439757 @default.
- W3007325578 cites W2963717915 @default.
- W3007325578 cites W2963809569 @default.
- W3007325578 cites W2964126381 @default.
- W3007325578 cites W2964343907 @default.
- W3007325578 cites W2966650348 @default.
- W3007325578 cites W2971353969 @default.
- W3007325578 cites W3034299904 @default.
- W3007325578 cites W3037873282 @default.
- W3007325578 cites W3039256091 @default.
- W3007325578 cites W3123298421 @default.
- W3007325578 hasPublicationYear "2020" @default.
- W3007325578 type Work @default.
- W3007325578 sameAs 3007325578 @default.
- W3007325578 citedByCount "1" @default.
- W3007325578 countsByYear W30073255782021 @default.
- W3007325578 crossrefType "posted-content" @default.
- W3007325578 hasAuthorship W3007325578A5001763022 @default.
- W3007325578 hasAuthorship W3007325578A5011507387 @default.
- W3007325578 hasAuthorship W3007325578A5024005489 @default.
- W3007325578 hasAuthorship W3007325578A5037482578 @default.
- W3007325578 hasAuthorship W3007325578A5075044662 @default.
- W3007325578 hasConcept C105795698 @default.
- W3007325578 hasConcept C106131492 @default.
- W3007325578 hasConcept C11413529 @default.
- W3007325578 hasConcept C121332964 @default.
- W3007325578 hasConcept C126255220 @default.
- W3007325578 hasConcept C140779682 @default.
- W3007325578 hasConcept C163716315 @default.
- W3007325578 hasConcept C19499675 @default.
- W3007325578 hasConcept C2524010 @default.
- W3007325578 hasConcept C2781395549 @default.
- W3007325578 hasConcept C31972630 @default.
- W3007325578 hasConcept C33923547 @default.
- W3007325578 hasConcept C41008148 @default.
- W3007325578 hasConcept C48044578 @default.
- W3007325578 hasConcept C52740198 @default.
- W3007325578 hasConcept C61326573 @default.
- W3007325578 hasConcept C62520636 @default.
- W3007325578 hasConcept C77088390 @default.
- W3007325578 hasConcept C99844830 @default.
- W3007325578 hasConceptScore W3007325578C105795698 @default.
- W3007325578 hasConceptScore W3007325578C106131492 @default.
- W3007325578 hasConceptScore W3007325578C11413529 @default.
- W3007325578 hasConceptScore W3007325578C121332964 @default.
- W3007325578 hasConceptScore W3007325578C126255220 @default.
- W3007325578 hasConceptScore W3007325578C140779682 @default.
- W3007325578 hasConceptScore W3007325578C163716315 @default.
- W3007325578 hasConceptScore W3007325578C19499675 @default.
- W3007325578 hasConceptScore W3007325578C2524010 @default.
- W3007325578 hasConceptScore W3007325578C2781395549 @default.
- W3007325578 hasConceptScore W3007325578C31972630 @default.