Matches in SemOpenAlex for { <https://semopenalex.org/work/W3007372272> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W3007372272 abstract "Medical imaging techniques currently produce 4D images that portray the dynamic behaviors and phenomena associated with internal structures. The segmentation of 4D images poses challenges different from those arising in segmenting 3D static images due to different patterns of variation of object shape and appearance in the space and time dimensions. In this paper, different network models are designed to learn the pattern of slice-to-slice change in the space and time dimensions independently. The two models then allow a gamut of strategies to actually segment the 4D image, such as segmentation following just the space or time dimension only, or following first the space dimension for one time instance and then following all time instances, or vice versa, etc. This paper investigates these strategies in the context of the obstructive sleep apnea (OSA) application and presents a unified deep learning framework to segment 4D images. Because of the sparse tubular nature of the upper airway and the surrounding low-contrast structures, inadequate contrast resolution obtainable in the magnetic resonance (MR) images leaves many challenges for effective segmentation of the dynamic airway in 4D MR images. Given that these upper airway structures are sparse, a Dice coefficient (DC) of ~0.88 for their segmentation based on our preferred strategy is similar to a DC of >0.95 for large non-sparse objects like liver, lungs, etc., constituting excellent accuracy." @default.
- W3007372272 created "2020-03-06" @default.
- W3007372272 creator A5002952437 @default.
- W3007372272 creator A5018154034 @default.
- W3007372272 creator A5026804587 @default.
- W3007372272 creator A5045565569 @default.
- W3007372272 creator A5059560314 @default.
- W3007372272 creator A5065713856 @default.
- W3007372272 creator A5080030813 @default.
- W3007372272 date "2020-02-28" @default.
- W3007372272 modified "2023-10-14" @default.
- W3007372272 title "Segmentation of 4D images via space-time neural networks" @default.
- W3007372272 cites W1749448734 @default.
- W3007372272 cites W2045784023 @default.
- W3007372272 cites W2094344683 @default.
- W3007372272 cites W2318423929 @default.
- W3007372272 cites W2336438347 @default.
- W3007372272 doi "https://doi.org/10.1117/12.2549605" @default.
- W3007372272 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7549185" @default.
- W3007372272 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33052163" @default.
- W3007372272 hasPublicationYear "2020" @default.
- W3007372272 type Work @default.
- W3007372272 sameAs 3007372272 @default.
- W3007372272 citedByCount "3" @default.
- W3007372272 countsByYear W30073722722020 @default.
- W3007372272 countsByYear W30073722722021 @default.
- W3007372272 countsByYear W30073722722023 @default.
- W3007372272 crossrefType "proceedings-article" @default.
- W3007372272 hasAuthorship W3007372272A5002952437 @default.
- W3007372272 hasAuthorship W3007372272A5018154034 @default.
- W3007372272 hasAuthorship W3007372272A5026804587 @default.
- W3007372272 hasAuthorship W3007372272A5045565569 @default.
- W3007372272 hasAuthorship W3007372272A5059560314 @default.
- W3007372272 hasAuthorship W3007372272A5065713856 @default.
- W3007372272 hasAuthorship W3007372272A5080030813 @default.
- W3007372272 hasBestOaLocation W30073722722 @default.
- W3007372272 hasConcept C124504099 @default.
- W3007372272 hasConcept C151730666 @default.
- W3007372272 hasConcept C153180895 @default.
- W3007372272 hasConcept C154945302 @default.
- W3007372272 hasConcept C163892561 @default.
- W3007372272 hasConcept C202444582 @default.
- W3007372272 hasConcept C2779343474 @default.
- W3007372272 hasConcept C31972630 @default.
- W3007372272 hasConcept C33676613 @default.
- W3007372272 hasConcept C33923547 @default.
- W3007372272 hasConcept C41008148 @default.
- W3007372272 hasConcept C86803240 @default.
- W3007372272 hasConcept C89600930 @default.
- W3007372272 hasConceptScore W3007372272C124504099 @default.
- W3007372272 hasConceptScore W3007372272C151730666 @default.
- W3007372272 hasConceptScore W3007372272C153180895 @default.
- W3007372272 hasConceptScore W3007372272C154945302 @default.
- W3007372272 hasConceptScore W3007372272C163892561 @default.
- W3007372272 hasConceptScore W3007372272C202444582 @default.
- W3007372272 hasConceptScore W3007372272C2779343474 @default.
- W3007372272 hasConceptScore W3007372272C31972630 @default.
- W3007372272 hasConceptScore W3007372272C33676613 @default.
- W3007372272 hasConceptScore W3007372272C33923547 @default.
- W3007372272 hasConceptScore W3007372272C41008148 @default.
- W3007372272 hasConceptScore W3007372272C86803240 @default.
- W3007372272 hasConceptScore W3007372272C89600930 @default.
- W3007372272 hasLocation W30073722721 @default.
- W3007372272 hasLocation W30073722722 @default.
- W3007372272 hasLocation W30073722723 @default.
- W3007372272 hasOpenAccess W3007372272 @default.
- W3007372272 hasPrimaryLocation W30073722721 @default.
- W3007372272 hasRelatedWork W1669643531 @default.
- W3007372272 hasRelatedWork W1982826852 @default.
- W3007372272 hasRelatedWork W2005437358 @default.
- W3007372272 hasRelatedWork W2008656436 @default.
- W3007372272 hasRelatedWork W2023558673 @default.
- W3007372272 hasRelatedWork W2110230079 @default.
- W3007372272 hasRelatedWork W2134924024 @default.
- W3007372272 hasRelatedWork W2517104666 @default.
- W3007372272 hasRelatedWork W2613186388 @default.
- W3007372272 hasRelatedWork W1967061043 @default.
- W3007372272 isParatext "false" @default.
- W3007372272 isRetracted "false" @default.
- W3007372272 magId "3007372272" @default.
- W3007372272 workType "article" @default.