Matches in SemOpenAlex for { <https://semopenalex.org/work/W3007441389> ?p ?o ?g. }
- W3007441389 endingPage "101818" @default.
- W3007441389 startingPage "101818" @default.
- W3007441389 abstract "Antimicrobial resistance has become one of the most important health problems and global action plans have been proposed globally. Prevention plays a key role in these actions plan and, in this context, we propose the use of Artificial Intelligence, specifically Time Series Forecasting techniques, for predicting future outbreaks of Methicillin-resistant Staphylococcus aureus (MRSA). Infection incidence forecasting is approached as a Feature Selection based Time Series Forecasting problem using multivariate time series composed of incidence of Staphylococcus aureus Methicillin-sensible and MRSA infections, influenza incidence and total days of therapy of both of Levofloxacin and Oseltamivir antimicrobials. Data were collected from the University Hospital of Getafe (Spain) from January 2009 to January 2018, using months as time granularity. The main contributions of the work are the following: the applications of wrapper feature selection methods where the search strategy is based on multi-objective evolutionary algorithms (MOEA) along with evaluators based on the most powerful state-of-the-art regression algorithms. The performance of the feature selection methods has been measured using the root mean square error (RMSE) and mean absolute error (MAE) performance metrics. A novel multi-criteria decision-making process is proposed in order to select the most satisfactory forecasting model, using the metrics previously mentioned, as well as the slopes of model prediction lines in the 1, 2 and 3 steps-ahead predictions. The multi-criteria decision-making process is applied to the best models resulting from a ranking of databases and regression algorithms obtained through multiple statistical tests. Finally, to the best of our knowledge, this is the first time that a feature selection based multivariate time series methodology is proposed for antibiotic resistance forecasting. Final results show that the best model according to the proposed multi-criteria decision making process provides a RMSE = (0.1349, 0.1304, 0.1325) and a MAE = (0.1003, 0.096, 0.0987) for 1, 2, and 3 steps-ahead predictions." @default.
- W3007441389 created "2020-03-06" @default.
- W3007441389 creator A5009305191 @default.
- W3007441389 creator A5019444823 @default.
- W3007441389 creator A5036554006 @default.
- W3007441389 creator A5043841208 @default.
- W3007441389 creator A5069325939 @default.
- W3007441389 creator A5085295968 @default.
- W3007441389 date "2020-04-01" @default.
- W3007441389 modified "2023-10-05" @default.
- W3007441389 title "Feature selection based multivariate time series forecasting: An application to antibiotic resistance outbreaks prediction" @default.
- W3007441389 cites W1158789509 @default.
- W3007441389 cites W1167218379 @default.
- W3007441389 cites W1581963595 @default.
- W3007441389 cites W1608465646 @default.
- W3007441389 cites W1701186622 @default.
- W3007441389 cites W1878404532 @default.
- W3007441389 cites W1967852222 @default.
- W3007441389 cites W1970769764 @default.
- W3007441389 cites W1975597297 @default.
- W3007441389 cites W1989009305 @default.
- W3007441389 cites W2000564604 @default.
- W3007441389 cites W2007174729 @default.
- W3007441389 cites W2017337590 @default.
- W3007441389 cites W2025841140 @default.
- W3007441389 cites W2038804116 @default.
- W3007441389 cites W2039240409 @default.
- W3007441389 cites W2046450837 @default.
- W3007441389 cites W2049187517 @default.
- W3007441389 cites W2080372516 @default.
- W3007441389 cites W2088007905 @default.
- W3007441389 cites W2089367555 @default.
- W3007441389 cites W2089685498 @default.
- W3007441389 cites W2090182720 @default.
- W3007441389 cites W2096329039 @default.
- W3007441389 cites W2098907614 @default.
- W3007441389 cites W2103000160 @default.
- W3007441389 cites W2122111042 @default.
- W3007441389 cites W2122284941 @default.
- W3007441389 cites W2125899728 @default.
- W3007441389 cites W2126105956 @default.
- W3007441389 cites W2127173202 @default.
- W3007441389 cites W2128890119 @default.
- W3007441389 cites W2131534673 @default.
- W3007441389 cites W2134239854 @default.
- W3007441389 cites W2143381319 @default.
- W3007441389 cites W2143426320 @default.
- W3007441389 cites W2144416549 @default.
- W3007441389 cites W2148488439 @default.
- W3007441389 cites W2154053567 @default.
- W3007441389 cites W2171255671 @default.
- W3007441389 cites W2561576489 @default.
- W3007441389 cites W2739135567 @default.
- W3007441389 cites W2760894977 @default.
- W3007441389 cites W2765937321 @default.
- W3007441389 cites W2799806172 @default.
- W3007441389 cites W2889290561 @default.
- W3007441389 cites W2897301007 @default.
- W3007441389 cites W2910328857 @default.
- W3007441389 cites W2911964244 @default.
- W3007441389 cites W2919520691 @default.
- W3007441389 cites W2940563585 @default.
- W3007441389 cites W2953877793 @default.
- W3007441389 cites W4241768922 @default.
- W3007441389 doi "https://doi.org/10.1016/j.artmed.2020.101818" @default.
- W3007441389 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32498998" @default.
- W3007441389 hasPublicationYear "2020" @default.
- W3007441389 type Work @default.
- W3007441389 sameAs 3007441389 @default.
- W3007441389 citedByCount "25" @default.
- W3007441389 countsByYear W30074413892020 @default.
- W3007441389 countsByYear W30074413892021 @default.
- W3007441389 countsByYear W30074413892022 @default.
- W3007441389 countsByYear W30074413892023 @default.
- W3007441389 crossrefType "journal-article" @default.
- W3007441389 hasAuthorship W3007441389A5009305191 @default.
- W3007441389 hasAuthorship W3007441389A5019444823 @default.
- W3007441389 hasAuthorship W3007441389A5036554006 @default.
- W3007441389 hasAuthorship W3007441389A5043841208 @default.
- W3007441389 hasAuthorship W3007441389A5069325939 @default.
- W3007441389 hasAuthorship W3007441389A5085295968 @default.
- W3007441389 hasConcept C105795698 @default.
- W3007441389 hasConcept C119857082 @default.
- W3007441389 hasConcept C124101348 @default.
- W3007441389 hasConcept C139945424 @default.
- W3007441389 hasConcept C148483581 @default.
- W3007441389 hasConcept C151406439 @default.
- W3007441389 hasConcept C151730666 @default.
- W3007441389 hasConcept C154945302 @default.
- W3007441389 hasConcept C161584116 @default.
- W3007441389 hasConcept C189430467 @default.
- W3007441389 hasConcept C2779343474 @default.
- W3007441389 hasConcept C33923547 @default.
- W3007441389 hasConcept C41008148 @default.
- W3007441389 hasConcept C86803240 @default.
- W3007441389 hasConceptScore W3007441389C105795698 @default.
- W3007441389 hasConceptScore W3007441389C119857082 @default.
- W3007441389 hasConceptScore W3007441389C124101348 @default.