Matches in SemOpenAlex for { <https://semopenalex.org/work/W3007631929> ?p ?o ?g. }
- W3007631929 endingPage "102527" @default.
- W3007631929 startingPage "102527" @default.
- W3007631929 abstract "Phase field modeling of fracture is computationally expensive as it demands a very fine mesh to resolve the damage region. Hence, the practical application of such models are severely limited. Local refinement techniques are often necessary. In our recent work (Goswami et al., 2019), for solving brittle fracture problems using physics informed neural network (PINN), the crack path is resolved by minimizing the variational energy of the system. However, in Goswami et al. (2019) we used a pre-refined domain based on prior information of the failure path, which is not always available. In this work, we propose an adaptive h-refinement scheme to locally refine the domain along the path of the growth of the crack. The phase field parameter, ϕ and a residual-based posteriori error estimator are the proposed convenient measures to determine the need for refinement. For ϕ, a critical threshold is chosen such that it is lower than the value at which crack nucleation occurs and the fracture region is easily identified. On the other hand, for the residual-based error estimator, elements contributing to the highest error are marked for refinement. The proposed algorithm takes as input the geometry described using NURBS patches. For the evaluation of the basis functions, we develop a procedure based on the Bézier representation and integrate it with the adaptive refinement formulation. The results obtained using the adaptive refinement integrated variational energy based PINN approach is validated with the available analytical solution for several examples from the literature. The proposed approach is implemented on several two and three-dimensional examples to illustrate the effectiveness of the formulation. Code and data necessary for replicating the results of the examples in the article will be made available through a GitHub repository." @default.
- W3007631929 created "2020-03-06" @default.
- W3007631929 creator A5015683810 @default.
- W3007631929 creator A5018353156 @default.
- W3007631929 creator A5065190539 @default.
- W3007631929 date "2020-06-01" @default.
- W3007631929 modified "2023-10-13" @default.
- W3007631929 title "Adaptive fourth-order phase field analysis using deep energy minimization" @default.
- W3007631929 cites W1973737329 @default.
- W3007631929 cites W1974811793 @default.
- W3007631929 cites W1978715047 @default.
- W3007631929 cites W1982891538 @default.
- W3007631929 cites W1990834492 @default.
- W3007631929 cites W2006078294 @default.
- W3007631929 cites W2020608887 @default.
- W3007631929 cites W2033882205 @default.
- W3007631929 cites W2043477908 @default.
- W3007631929 cites W2043784721 @default.
- W3007631929 cites W2067819153 @default.
- W3007631929 cites W2081784455 @default.
- W3007631929 cites W2084306900 @default.
- W3007631929 cites W2095069391 @default.
- W3007631929 cites W2114207581 @default.
- W3007631929 cites W2144237581 @default.
- W3007631929 cites W2170133891 @default.
- W3007631929 cites W2603422556 @default.
- W3007631929 cites W2755594865 @default.
- W3007631929 cites W2760972773 @default.
- W3007631929 cites W2803629276 @default.
- W3007631929 cites W2899097224 @default.
- W3007631929 cites W2899283552 @default.
- W3007631929 cites W2908541468 @default.
- W3007631929 cites W2912649832 @default.
- W3007631929 cites W2928106546 @default.
- W3007631929 cites W2942896733 @default.
- W3007631929 cites W2966996270 @default.
- W3007631929 cites W2967919047 @default.
- W3007631929 cites W2998757551 @default.
- W3007631929 cites W3126126937 @default.
- W3007631929 cites W4239097771 @default.
- W3007631929 cites W4249537394 @default.
- W3007631929 doi "https://doi.org/10.1016/j.tafmec.2020.102527" @default.
- W3007631929 hasPublicationYear "2020" @default.
- W3007631929 type Work @default.
- W3007631929 sameAs 3007631929 @default.
- W3007631929 citedByCount "35" @default.
- W3007631929 countsByYear W30076319292020 @default.
- W3007631929 countsByYear W30076319292021 @default.
- W3007631929 countsByYear W30076319292022 @default.
- W3007631929 countsByYear W30076319292023 @default.
- W3007631929 crossrefType "journal-article" @default.
- W3007631929 hasAuthorship W3007631929A5015683810 @default.
- W3007631929 hasAuthorship W3007631929A5018353156 @default.
- W3007631929 hasAuthorship W3007631929A5065190539 @default.
- W3007631929 hasConcept C105795698 @default.
- W3007631929 hasConcept C111472728 @default.
- W3007631929 hasConcept C11413529 @default.
- W3007631929 hasConcept C126255220 @default.
- W3007631929 hasConcept C131053463 @default.
- W3007631929 hasConcept C138885662 @default.
- W3007631929 hasConcept C147597530 @default.
- W3007631929 hasConcept C14961307 @default.
- W3007631929 hasConcept C155512373 @default.
- W3007631929 hasConcept C17744445 @default.
- W3007631929 hasConcept C185429906 @default.
- W3007631929 hasConcept C185592680 @default.
- W3007631929 hasConcept C186370098 @default.
- W3007631929 hasConcept C199360897 @default.
- W3007631929 hasConcept C199539241 @default.
- W3007631929 hasConcept C202444582 @default.
- W3007631929 hasConcept C2776359362 @default.
- W3007631929 hasConcept C2777735758 @default.
- W3007631929 hasConcept C28826006 @default.
- W3007631929 hasConcept C33923547 @default.
- W3007631929 hasConcept C41008148 @default.
- W3007631929 hasConcept C459310 @default.
- W3007631929 hasConcept C75553542 @default.
- W3007631929 hasConcept C94625758 @default.
- W3007631929 hasConcept C9652623 @default.
- W3007631929 hasConceptScore W3007631929C105795698 @default.
- W3007631929 hasConceptScore W3007631929C111472728 @default.
- W3007631929 hasConceptScore W3007631929C11413529 @default.
- W3007631929 hasConceptScore W3007631929C126255220 @default.
- W3007631929 hasConceptScore W3007631929C131053463 @default.
- W3007631929 hasConceptScore W3007631929C138885662 @default.
- W3007631929 hasConceptScore W3007631929C147597530 @default.
- W3007631929 hasConceptScore W3007631929C14961307 @default.
- W3007631929 hasConceptScore W3007631929C155512373 @default.
- W3007631929 hasConceptScore W3007631929C17744445 @default.
- W3007631929 hasConceptScore W3007631929C185429906 @default.
- W3007631929 hasConceptScore W3007631929C185592680 @default.
- W3007631929 hasConceptScore W3007631929C186370098 @default.
- W3007631929 hasConceptScore W3007631929C199360897 @default.
- W3007631929 hasConceptScore W3007631929C199539241 @default.
- W3007631929 hasConceptScore W3007631929C202444582 @default.
- W3007631929 hasConceptScore W3007631929C2776359362 @default.
- W3007631929 hasConceptScore W3007631929C2777735758 @default.
- W3007631929 hasConceptScore W3007631929C28826006 @default.