Matches in SemOpenAlex for { <https://semopenalex.org/work/W3007723648> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W3007723648 abstract "Generative Policy Models (GPMs) have been proposed as a method for future autonomous decision making in a distributed, collaborative environment. To learn a GPM, previous policy examples that contain policy features and the corresponding policy decisions are used. Recently, GPMs have been constructed using both symbolic and statistical learning algorithms. In either case, the goal of the learning process is to create a model across a wide range of contexts from which specific policies may be generated in a given context. Empirically, we expect each learning approach to provide certain advantages over the other. This paper assesses the relative performance of each learning approach in order to examine these advantages and disadvantages. Several carefully prepared data sets are used to train a variety of models across different learning algorithms, where models for each learning algorithm are trained with varying amounts of labelled examples. The performance of each model is evaluated across a variety of metrics which indicates the strength of each learning algorithm for the different scenarios presented and the amount of training data provided. Finally, future research directions are outlined to fully realise GPMs in a distributed, collaborative environment." @default.
- W3007723648 created "2020-03-06" @default.
- W3007723648 creator A5027423431 @default.
- W3007723648 creator A5037831458 @default.
- W3007723648 creator A5046462940 @default.
- W3007723648 creator A5061694501 @default.
- W3007723648 creator A5072892003 @default.
- W3007723648 creator A5077009470 @default.
- W3007723648 date "2019-12-01" @default.
- W3007723648 modified "2023-09-26" @default.
- W3007723648 title "A Comparison Between Statistical and Symbolic Learning Approaches for Generative Policy Models" @default.
- W3007723648 cites W1579302615 @default.
- W3007723648 cites W2157839714 @default.
- W3007723648 cites W228104253 @default.
- W3007723648 cites W2540236031 @default.
- W3007723648 cites W2605974740 @default.
- W3007723648 cites W2618644205 @default.
- W3007723648 cites W2704870092 @default.
- W3007723648 cites W2805971087 @default.
- W3007723648 cites W2809002738 @default.
- W3007723648 cites W2810205687 @default.
- W3007723648 cites W2890161843 @default.
- W3007723648 cites W2904043513 @default.
- W3007723648 cites W2940813702 @default.
- W3007723648 cites W2944903169 @default.
- W3007723648 cites W2945626893 @default.
- W3007723648 cites W2953647034 @default.
- W3007723648 cites W2965301609 @default.
- W3007723648 cites W3128452405 @default.
- W3007723648 doi "https://doi.org/10.1109/icmla.2019.00214" @default.
- W3007723648 hasPublicationYear "2019" @default.
- W3007723648 type Work @default.
- W3007723648 sameAs 3007723648 @default.
- W3007723648 citedByCount "0" @default.
- W3007723648 crossrefType "proceedings-article" @default.
- W3007723648 hasAuthorship W3007723648A5027423431 @default.
- W3007723648 hasAuthorship W3007723648A5037831458 @default.
- W3007723648 hasAuthorship W3007723648A5046462940 @default.
- W3007723648 hasAuthorship W3007723648A5061694501 @default.
- W3007723648 hasAuthorship W3007723648A5072892003 @default.
- W3007723648 hasAuthorship W3007723648A5077009470 @default.
- W3007723648 hasConcept C10138342 @default.
- W3007723648 hasConcept C111919701 @default.
- W3007723648 hasConcept C119857082 @default.
- W3007723648 hasConcept C136197465 @default.
- W3007723648 hasConcept C151730666 @default.
- W3007723648 hasConcept C154945302 @default.
- W3007723648 hasConcept C159985019 @default.
- W3007723648 hasConcept C162324750 @default.
- W3007723648 hasConcept C167966045 @default.
- W3007723648 hasConcept C182306322 @default.
- W3007723648 hasConcept C192562407 @default.
- W3007723648 hasConcept C204323151 @default.
- W3007723648 hasConcept C2779343474 @default.
- W3007723648 hasConcept C39890363 @default.
- W3007723648 hasConcept C41008148 @default.
- W3007723648 hasConcept C86803240 @default.
- W3007723648 hasConcept C98045186 @default.
- W3007723648 hasConceptScore W3007723648C10138342 @default.
- W3007723648 hasConceptScore W3007723648C111919701 @default.
- W3007723648 hasConceptScore W3007723648C119857082 @default.
- W3007723648 hasConceptScore W3007723648C136197465 @default.
- W3007723648 hasConceptScore W3007723648C151730666 @default.
- W3007723648 hasConceptScore W3007723648C154945302 @default.
- W3007723648 hasConceptScore W3007723648C159985019 @default.
- W3007723648 hasConceptScore W3007723648C162324750 @default.
- W3007723648 hasConceptScore W3007723648C167966045 @default.
- W3007723648 hasConceptScore W3007723648C182306322 @default.
- W3007723648 hasConceptScore W3007723648C192562407 @default.
- W3007723648 hasConceptScore W3007723648C204323151 @default.
- W3007723648 hasConceptScore W3007723648C2779343474 @default.
- W3007723648 hasConceptScore W3007723648C39890363 @default.
- W3007723648 hasConceptScore W3007723648C41008148 @default.
- W3007723648 hasConceptScore W3007723648C86803240 @default.
- W3007723648 hasConceptScore W3007723648C98045186 @default.
- W3007723648 hasLocation W30077236481 @default.
- W3007723648 hasOpenAccess W3007723648 @default.
- W3007723648 hasPrimaryLocation W30077236481 @default.
- W3007723648 hasRelatedWork W1534961803 @default.
- W3007723648 hasRelatedWork W2108501770 @default.
- W3007723648 hasRelatedWork W2884815824 @default.
- W3007723648 hasRelatedWork W2949416428 @default.
- W3007723648 hasRelatedWork W3012204997 @default.
- W3007723648 hasRelatedWork W3017062960 @default.
- W3007723648 hasRelatedWork W4241824423 @default.
- W3007723648 hasRelatedWork W4253371817 @default.
- W3007723648 hasRelatedWork W4293428270 @default.
- W3007723648 hasRelatedWork W2310403681 @default.
- W3007723648 isParatext "false" @default.
- W3007723648 isRetracted "false" @default.
- W3007723648 magId "3007723648" @default.
- W3007723648 workType "article" @default.